•  
  •  
 

Keywords

Algebraic-difference equation, behavior, exact modeling, auto-regressive representation, discrete time system, higher order system, descriptor system

Abstract

For a given system of algebraic and difference equations, written as an Auto-Regressive (AR) representation $A(\sigma)\beta(k)=0$, where $\sigma $ denotes the shift forward operator and $A\left( \sigma \right) $ a regular polynomial matrix, the forward-backward behavior of this system can be constructed by using the finite and infinite elementary divisor structure of $A\left( \sigma \right) $. This work studies the inverse problem: Given a specific forward-backward behavior, find a family of regular or non-regular polynomial matrices $A\left( \sigma \right) $, such that the constructed system $A\left( \sigma \right) \beta \left( k\right) =0$ has exactly the prescribed behavior. It is proved that this problem can be reduced either to a linear system of equations problem or to an interpolation problem and an algorithm is proposed for constructing a system satisfying a given forward and/or backward behavior.

abs_vol34_pp1-17.pdf (101 kB)
Abstract

Share

COinS
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.