•  
  •  
 

Keywords

numerical range, finite field, Hermitian variety over a finite field

Abstract

Let $q$ be a prime power. For $u=(u_1,\dots ,u_n), v=(v_1,\dots ,v_n)\in \mathbb {F} _{q^2}^n$, let $\langle u,v\rangle := \sum _{i=1}^{n} u_i^qv_i$ be the Hermitian form of $\mathbb {F} _{q^2}^n$. Fix an $n\times n$ matrix $M$ over $\mathbb {F} _{q^2}$. In this paper, it is considered the case $k=0$ of the set $\mathrm{Num} _k(M):= \{\langle u,Mu\rangle \mid u\in \mathbb {F} _{q^2}^n, \langle u,u\rangle =k\}$. When $M$ has coefficients in $\mathbb {F} _q$ the paper studies the set $\mathrm{Num} _k(M)_q:= \{\langle u,Mu\rangle \mid u\in \mathbb {F} _q^n,\langle u,u\rangle =k\}\subseteq \mathbb {F} _q$. The set $\mathrm{Num} _1(M)$ is the numerical range of $M$, previously introduced in a paper by Coons, Jenkins, Knowles, Luke, and Rault (case $q$ a prime $p\equiv 3\pmod{4}$), and by the author (arbitrary $q$). In this paper, it is studied in details $\mathrm{Num} _0(M)$ and $\mathrm{Num} _k(M)_q$ when $n=2$. If $q$ is even, $\mathrm{Num} _0(M)_q$ is easily described for arbitrary $n$. If $q$ is odd, then either $\mathrm{Num} _0(M)_q =\{0\}$, or $\mathrm{Num} _0(M)_q=\mathbb {F} _q$, or $\sharp (\mathrm{Num} _0(M)_q)=(q+1)/2$.

abs_vol34_pp205-216.pdf (130 kB)
Abstract

Included in

Algebra Commons

Share

COinS
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.