•  
  •  
 

Keywords

copositive matrix, extreme ray, zero support set

Abstract

Let $A \in {\cal C}^n$ be an exceptional extremal copositive $n \times n$ matrix with positive diagonal. A zero $u$ of $A$ is a non-zero nonnegative vector such that $u^TAu = 0$. The support of a zero $u$ is the index set of the positive elements of $u$. A zero $u$ is minimal if there is no other zero $v$ such that $\Supp v \subset \Supp u$ strictly. Let $G$ be the graph on $n$ vertices which has an edge $(i,j)$ if and only if $A$ has a zero with support $\{1,\dots,n\} \setminus \{i,j\}$. In this paper, it is shown that $G$ cannot contain a cycle of length strictly smaller than $n$. As a consequence, if all minimal zeros of $A$ have support of cardinality $n - 2$, then $G$ must be the cycle graph $C_n$.

abs_vol34_pp28-34.pdf (132 kB)
Abstract

Included in

Algebra Commons

Share

COinS
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.