Document Type

Article

Publication Date

1-1-2003

Abstract

In this paper we present an efficient numerical approach based on the renormalization group method for the computation of self-similar dynamics. The latter arise, for instance, as the long-time asymptotic behavior of solutions to nonlinear parabolic partial differential equations. We illustrate the approach with the veri. cation of a conjecture about the long-time behavior of solutions to a certain class of nonlinear diffusion equations with periodic coefficients. This conjecture is based on a mixed argument involving ideas from homogenization theory and the renormalization group method. Our numerical approach provides a detailed picture of the asymptotics, including the determination of the effective or renormalized diffusion coefficient.

Publication Title

Multiscale Modeling & Simulation

DOI

10.1137/S1540345902416600

Included in

Mathematics Commons

Share

COinS