Document Type

Yellowstone National Park Report

First Page


Last Page



The 1988 fires that burned in Yellowstone National Park presented ecologists with a unique opportunity to investigate ecological responses to large-scale fires (Christensen et al. 1989, Knight and Wallace 1989). The Yellowstone fires created an extremely heterogeneous landscape in terms of both the overall burning patterns and the variable fire severity within burned areas. Large fires rarely consume the entire forest because of the influence of wind variations, topography, vegetation type, natural fire breaks, and the time of day that the fire passed through (Rowe and Scotter 1973, Wright and Heinselman 1973, Van Wagner 1983). Direct fire effects such as tree mortality and organic matter consumption are related to locally variable parameters such as moisture content (Brown et al. 1985, Peterson and Ryan 1986, Ryan et al. 1988), and fire severity and return intervals are often strongly influenced by topographic and edaphic variability (Habeck and Mutch 1973, Romme and Knight 1981, Hemstrom and Franklin 1982, Whitney 1986). Therefore, burned landscapes generally contain areas of low as well as high intensity fire, usually in a complex mosaic (Van Wagner 1983). These variable fire intensities result in a heterogeneous pattern of burn severities (effects of fire on the ecosystem), as well as islands of unburned vegetation. The influence of burn severity on plant reestablishment following fire is well documented (e.g., Lyon and Stickney 1976, Rowe and Scotter 1973, Viereck 1983, Ryan and Noste 1985), and the importance of the effects of limited burns and low-intensity fires on the vegetation mosaic has been recognized (Habeck and Mutch 1973, Rowe 1983). However, few studies have dealt explicitly with the spatial variation of fire effects in a systematic and quantitative way.