•  
  •  
 

Document Type

Grand Teton National Park Report

First Page

119

Last Page

123

Abstract

Large woody debris (LWD) plays a key role in controlling the ecology and geomorphology of streams. Woody debris traps coarse particulate organic matter and sediments (Andersen and Sedell, 1979; Bilby and Likens, 1980; Marston, 1982); provides habitat for aquatic insects (Angermeier and Karr, 1984; Benke et al., 1985); and provides cover in pools and slow water areas (Bisson et al., 1982, 1987; Tschaplinski and Hartman, 1983; Fausch and Northcote, 1992). The role of wood in affecting stream morphology is dependent on the size of the stream (Bilby and Ward, 1989). In smaller streams, woody debris can create step pool sequences (Heede, 1972, 1985; Marston, 1982), increase pool area (Murphy and Hall, 1981; Ralph et al., 1994), and reduce sediment transport (Bilby, 1984). Nakamura and Swanson (1993) noted that the importance of woody debris to the morphology of first order streams can be limited by the size of the debris, which is often large enough to bridge the channel and not interact with the flow. Woody debris plays a larger role when it enters the channel bottom, where it can divert flow and affect erosion and deposition. The scale issues raised by Bilby and Ward (1989) and Nakamura and Swanson (1993) are critical to understanding the role of woody debris. To date, LWD has not been adequately studied at watershed scales in larger rivers. In fact, there is little understanding of the relationship between LWD and the geomorphic pattern of the river channel (Piegay and Marston, 1998; Piegay and Gumell, 1997; Piegay, 1993). The purpose of this study is to document the distribution of LWD jams on the Snake River in Grand Teton National Park, Wyoming in order to understand the effects of LWD on channel morphology in large river systems.

Share

COinS