Document Type


Publication Date



Clouds are a critical component of the Earth's coupled water and energy cycles. Poor understanding of cloud–radiation–dynamics feedbacks results in large uncertainties in forecasting human-induced climate changes. Better understanding of cloud microphysical and dynamical processes is critical to improving cloud parameterizations in climate models as well as in cloud-resolving models. Airborne in situ and remote sensing can make critical contributions to progress. Here, a new integrated cloud observation capability developed for the University of Wyoming King Air is described. The suite of instruments includes the Wyoming Cloud Lidar, a 183- GHz microwave radiometer, the Wyoming Cloud Radar, and in situ probes. Combined use of these remote sensor measurements yields more complete descriptions of the vertical structure of cloud microphysical properties and of cloud-scale dynamics than that attainable through ground-based remote sensing or in situ sampling alone. Together with detailed in situ data on aerosols, hydrometeors, water vapor, thermodynamic, and air motion parameters, an advanced observational capability was created to study cloud-scale processes from a single aircraft. The Wyoming Airborne Integrated Cloud Observation (WAICO) experiment was conducted to demonstrate these new capabilities and examples are presented to illustrate the results obtained.




© Copyright 2012 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act September 2010 Page 2 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a web site or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at ( or from the AMS at 617-227-2425 or

Included in

Engineering Commons