4-15-1996

Synthesis and superconductivity of intermetallic compounds Y2Ni x B8−x C2, YNi x Cu2−x B2C, and YNi x Cu2−x Si2C

Wei Zhao
University of New Orleans

Jinke Tang
University of Wyoming, jtang2@uwyo.edu

Young-sook Lee
University of New Orleans

Charles J. O'Connor
University of New Orleans

Follow this and additional works at: https://repository.uwyo.edu/physics_astronomy_facpub

Part of the Physical Sciences and Mathematics Commons

Publication Information
Zhao, Wei; Tang, Jinke; Lee, Young-sook; and O'Connor, Charles J. (1996). "Synthesis and superconductivity of intermetallic compounds Y2Ni x B8−x C2, YNi x Cu2−x B2C, and YNi x Cu2−x Si2C." JOURNAL OF APPLIED PHYSICS 79.8, 5870-5872.

This Article is brought to you for free and open access by the Physics and Astronomy at Wyoming Scholars Repository. It has been accepted for inclusion in Physics and Astronomy Faculty Publications by an authorized administrator of Wyoming Scholars Repository. For more information, please contact scholcom@uwyo.edu.
Synthesis and superconductivity of intermetallic compounds Y2Ni x B8−x C2, YNi x Cu2−x B2C, and YNi x Cu2−x Si2C

Wei Zhao, Jinke Tang, Youngsook Lee, and Charles J. O'Connor

Citation: Journal of Applied Physics 79, 5870 (1996); doi: 10.1063/1.362156
View online: http://dx.doi.org/10.1063/1.362156
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/79/8?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Low-temperature large reversible magnetocaloric effects of ErNi 1-x Cu x Al (x = 0.2, 0.5, 0.8) intermetallic compounds

Superconducting properties of Fedoped YNi2B2C
J. Appl. Phys. 79, 6561 (1996); 10.1063/1.361946

Synthesis of YNi2B2C thin films by magnetron sputtering

New properties associated with the occurrence of dband magnetism in the YNi compounds
J. Appl. Phys. 52, 2087 (1981); 10.1063/1.329625

Magnetic properties of amorphous YNi alloys
J. Appl. Phys. 49, 1680 (1978); 10.1063/1.324886
Synthesis and superconductivity of intermetallic compounds $Y_2Ni_xB_8-C_x$, $YNi_xCu_{2-x}B_2C$, and $YNi_xCu_{2-x}Si_{2}C$

Wei Zhao and Jinke Tang
Department of Physics, University of New Orleans, New Orleans, Louisiana 70148

Young-sook Lee and Charles J. O’Connor
Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148

Borocarbide and silicocarbide intermetallic $Y_2Ni_xB_8-C_x$ ($x = 1, 2, 3, 5$), $YNiCuB_2C$, and $YNiCu_xSi_{2}C$ ($x = 0, 2$) were prepared and their superconductivity was studied. The results indicated that with the change of the ratio of Ni to B in $Y_2Ni_xB_8-C_x$, secondary phases were introduced into $YNiB_2C$ phase. A $T_c$ of 15.0 K was observed for the compounds $x = 2, 3, 5$, which originated from the major phase $YNiB_2C$ in these samples. Partial substitution of Ni by Cu reduced the $T_c$ to 11.0 K for $YNiCuB_2C$. For Si substitution system, no bulk superconductivity was found in $YNiSiC$ and $YCuC SiC$. But a minor superconducting phase ($T_c \sim 4$ K) with a volume fraction of the order of near 1% was observed in them. It was noticed that for the temperature-dependent magnetization of superconducting compounds containing Ni, a significant difference between zero-field cooling and field cooling curves before $T_c$ was always observed, which was tentatively attributed to Ni-containing impurity. © 1996 American Institute of Physics.

I. INTRODUCTION

Superconductivity has been discovered recently in borocarbide intermetallic $YNiB_2C$ with $T_c = 15.6$ K.\(^1\) Like LuNi$_2$B$_2$C, YNi$_2$B$_2$C displays a tetragonal body-centered layerlike structure with a $I4/mmm$ symmetry.\(^1,2\) It may be viewed as alternate stackings of the NaCl-type (Y) and the inverse PbO-type ($NiB_2$) layers. In the $NiB_2$ layers, a Ni atom is tetrahedrally coordinated by four boron atoms. It is interesting to inspect the possibility of increasing $T_c$ in this system through substitution of Ni and B by other elements such as Cu and Si and through changing the ratio of Ni and B. In this work, borocarbide and silicocarbide intermetallic $Y_2Ni_xB_8-C_x$ ($x = 1, 2, 3, 5$), $YNiCuB_2C$, and $YNiCu_xSi_{2}C$ ($x = 0, 2$) have been prepared and their superconductivity is studied.

II. EXPERIMENT

Samples were prepared by the arc-melt technique. The starting materials were Y (Aldrich, 99.9%), Ni (Aldrich, 99.95%), Cu (Aldrich, 99.99%), B (99.999%), C (99.9%), and Si (99.9%). Stoichiometric amounts of the starting materials were melted under argon atmosphere on a standard water-cooled copper hearth at least four times, with the melted button turned over between melts in order to ensure homogeneity. The overall loss in weight of the samples during arc melting was less 1%.

The magnetic susceptibility was measured by a SQUID magnetometer (Quantum Design). The resistance was determined by the standard four-lead method. The x-ray diffraction patterns of samples were obtained on a SCINTAG powder diffractometer using Cu $K\alpha$ radiation.

III. RESULTS AND DISCUSSION

For $Y_2Ni_xB_8-C_x$ ($x = 1, 2, 3, 5$) system, their x-ray diffraction patterns indicated that all samples were multiphased. Except for the sample with $x = 1$, all other three samples showed major diffraction patterns characteristic of $YNiB_2C$.

Figure 1(a) shows the normalized x-ray diffraction patterns of $Y_2NiB_3C_2$. One can see that the main peaks can be attributed to the $YNiB_2C$ phase with lattice parameters $a = 3.53$ Å and $c = 10.57$ Å, agreeing with the data in Ref. 1. For $Y_2NiB_3C_2$ ($YNiB_2C$) and $Y_2NiB_3C_2$ samples, their major diffraction patterns can also be indexed with the $YNiB_2C$ of the same lattice parameters. For the sample

![Figure 1. The x-ray diffraction patterns of $YNiB_2C_2$, $YNiSiC$, and $YCuC SiC$.](image-url)
no YNi$_2$B$_2$C phase was observed. The analysis of the secondary phases in these samples has been proven to be a difficult task and will be discussed elsewhere. The above results were consistent with those of Buchgeister et al.\textsuperscript{3} and Chakoumakos and Paranthaman,\textsuperscript{4} who reported that excess amounts of both Ni and B introduced secondary phases into the samples. These results also confirmed that defects such as planar defects or intergrowths were hard to exist in the YNi$_2$B$_2$C structure.\textsuperscript{2}

The x-ray diffraction pattern of Cu-substituted YNiCuB$_2$C consisted of a major pattern with tetragonal structure with lattice parameters $a = 3.54$ Å and $c = 10.63$ Å and some additional peaks which could not be identified. Gangopadhyay et al.\textsuperscript{5} found that there was limited solubility in YNi$_2$B$_2$C for Cu and that with increasing the doping level of Cu, the impurity peaks grew stronger. Our data agreed with their results.

Silicocarbides YNi$_2$Si$_2$C and YCu$_2$Si$_2$C were prepared as shown in Figs. 1(b) and 1(c). In Fig. 1(b), most of the diffraction peaks can be indexed to the YNi$_2$B$_2$C-type structure with lattice parameters $a = 3.94$ Å and $c = 9.55$ Å. This suggests that a new silicocarbide intermetallic YNi$_2$Si$_2$C compound with YNi$_2$B$_2$C-type structure was formed. For YCu$_2$Si$_2$C, the diffraction pattern [Fig. 1(c)] showed that this sample was multiphased. The main peaks were identified to the YNi$_2$B$_2$C-type structure with $a = 3.95$ Å and $c = 9.98$ Å. There also existed peaks of secondary phases in Fig. 1(c) whose indentification is needed. The result of YCu$_2$Si$_2$C is similar to that of Cu-substituted YNiCuB$_2$C in which pure, Cu-containing intermetallic compounds with a YNi$_2$B$_2$C-type structure are difficult to synthesize by means of an arc-melting technique.

Figure 2 shows the temperature dependence of the magnetization measured at 10 G and the resistance for the Y$_2$Ni$_3$B$_5$C$_2$ sample. The superconducting transition is seen at 15.0 K with a broader transition width as compared with that of the pure YNi$_2$B$_2$C sample.\textsuperscript{1} The sample cooled in zero field shows a magnetic shielding equal to $\sim 80\%$–$100\%$ of that of a perfect superconductor. On cooling in the field, it displays a Meissner effect of $\sim 10\%$ of that expected for perfect diamagnetism. The broader transition width may result from the secondary phases already seen in the x-ray pattern which separate the YNi$_2$B$_2$C phase grains so that weak links form. We found that before $T_c$, positive, up-grown field cooling and zero-field cooling curves were always observed in these Ni-containing samples. As shown in the left inset of Fig. 2, the zero-field cooling curve shows a broad maximum at $\sim 60$ K. More interestingly, for this sample, its ZFC susceptibility became negative at a lower temperature. Although ac susceptibility conducted on the sample indicated that this negative ZFC dc susceptibility was not due to a superconducting phase transition, its origin is yet
to be found out. Its FC susceptibility, on the other hand, continued to increase with decreasing temperature until \( T_c \) was reached. This novel behavior is most likely to be associated with a Ni-containing impurity. For \( Y_{2}Ni_{2}B_{2}C_{2} \) (YNiB\(_3\)C) and \( Y_{2}Ni_{3}B_{2}C_{2} \) samples, they possess the same onset temperature at 15.0 K with a broader transition width. This result is consistent with the x-ray data which indicate that YNi\(_2\)B\(_2\)C is the major phase in these samples. For the sample \( Y_{2}Ni_{7}B_{2}C_{2} \), no superconductivity was found. Its susceptibility (in the order of \( 10^{-5} \)) seems to follow the Curie–Weiss law. Such a behavior may be due to a residual magnetic moment of Ni.\(^6\)

The temperature-dependent magnetization data measured at 20 G for Cu-substituted YNiCuB\(_2\)C are given in Fig. 3. The shield signal corresponds to \( \sim 25\% \) of perfect diamagnetism. The inset to Fig. 3 shows an onset temperature at 11.0 K, indicating that Cu substitution for Ni reduces \( T_c \), agreeing with that of Gangopadhyay et al.\(^5\)

Superconductivity in small quantities can be observed in silicocarbides \( YNi_{2}Si_{2}C \) and \( YCu_{2}Si_{2}C \). The temperature dependence of the magnetization at 10 G for both samples is shown in Fig. 4. The onset temperature is \( \sim 4\) K for both samples. The magnitudes of the shielding and Meissner effect signals correspond to \( \sim 1.5\% \) and \( \sim 1.2\% \) of perfect diamagnetism for \( YNi_{2}Si_{2}C \) and \( \sim 1\% \) and \( \sim 0.4\% \) for \( YCu_{2}Si_{2}C \), respectively. This suggests that the superconducting phase is a minor phase with a volume fraction of the order of 1%. From the insets of Fig. 4, the hysteresis between field cooling and zero-field cooling curves before \( T_c \) can also be seen in YNi\(_2\)Si\(_2\)C. While such curves were not observed in YCu\(_2\)Si\(_2\)C, which is Ni free, further suggesting that this history-dependent hysteretic magnetic behavior is associated with a Ni-containing impurity.

**IV. CONCLUSIONS**

Deviation from the stoichiometric composition of \( YNi_{2}B_{2}C \) by changing the ratio of Ni to B introduced impurity phases into the major phase \( YNi_{2}B_{2}C \). In \( Y_{2}Ni_{8-x}B_{x-2}C_{2} \) (\( x = 2, 3, 5 \)), the major phase \( YNi_{2}B_{2}C \) was responsible for superconductivity with \( T_c = 15.0\) K. For Cu-substituted YNiCuB\(_2\)C, an expansion in lattice was observed due to the substitution of Ni with Cu. Secondary phases emerged because of the limited solubility of Cu in this compound. The Cu substitution reduced the \( T_c \) to 11 K, in agreement with the argument that the Fermi level in the parent compound lies very near to a peak in the density of states so that further enhancement in \( T_c \) by chemical modification is rather unlikely.\(^5\) For new silicocarbides \( YNi_{2}Si_{2}C \) and \( YCu_{2}Si_{2}C \), they were not bulk superconductors. But there existed superconducting minor phases with \( T_c = \sim 4\) K.

**ACKNOWLEDGMENTS**

This work was supported by National Science Foundation, Department of Energy, and Louisiana Education Quality Support Fund.