Variational characterizations of the sign-real and the sign-complex spectral radius

Siegfried M. Rump
rump@tu-harburg.de

Follow this and additional works at: https://repository.uwyo.edu/ela

Recommended Citation
DOI: https://doi.org/10.13001/1081-3810.1077

This Article is brought to you for free and open access by Wyoming Scholars Repository. It has been accepted for inclusion in Electronic Journal of Linear Algebra by an authorized editor of Wyoming Scholars Repository. For more information, please contact scholcom@uwyo.edu.
VARIATIONAL CHARACTERIZATIONS OF THE SIGN-REAL AND THE SIGN-COMPLEX SPECTRAL RADIUS∗
SIEGFRIED M. RUMP†

Key words. Generalized spectral radius, sign-real spectral radius, sign-complex spectral radius, Perron-Frobenius theory.

AMS subject classifications. 15A48, 15A18

Abstract. The sign-real and the sign-complex spectral radius, also called the generalized spectral radius, proved to be an interesting generalization of the classical Perron-Frobenius theory (for nonnegative matrices) to general real and to general complex matrices, respectively. Especially the generalization of the well-known Collatz-Wielandt max-min characterization shows one of the many one-to-one correspondences to classical Perron-Frobenius theory. In this paper the corresponding inf-max characterization as well as variational characterizations of the generalized (real and complex) spectral radius are presented. Again those are almost identical to the corresponding results in classical Perron-Frobenius theory.

1. Introduction. Denote $\mathbb{R}_+ := \{ x \geq 0 : x \in \mathbb{R} \}$, and let $\mathbb{K} \in \{ \mathbb{R}_+, \mathbb{R}, \mathbb{C} \}$. The generalized spectral radius is defined [6] by

$$(1.1) \quad \rho^K(A) := \max \{ |\lambda| : \exists 0 \neq x \in \mathbb{K}^n, \exists \lambda \in \mathbb{K}, |Ax| = |\lambda x| \} \quad \text{for} \quad A \in M_n(\mathbb{K}).$$

Note that absolute value and comparison of matrices and vectors are always to be understood componentwise. For example, $A \preceq |C|$ for $A \in M_n(\mathbb{R})$, $C \in M_n(\mathbb{C})$ is equivalent to $A_{ij} \leq |C_{ij}|$ for all i,j.

For $\mathbb{K} = \mathbb{R}_+$ the quantity in (1.1) is the classical Perron root, for $\mathbb{K} \in \{ \mathbb{R}, \mathbb{C} \}$ it is the sign-real or sign-complex spectral radius, respectively. Note that the quantities are only defined for matrices over the specific set \mathbb{K}, and also note that for $\rho^\mathbb{R}$ the maximum $|\lambda|$ is only taken over real λ and real x. Vectors $0 \neq x \in \mathbb{K}^n$ and scalars $\lambda \in \mathbb{K}$ satisfying the nonlinear eigenequation $|Ax| = |\lambda x|$ are also called generalized eigenvectors and generalized eigenvalues, respectively.

Denote the set of signature matrices over \mathbb{K} by $S(\mathbb{K})$, which are diagonal matrices S with $|S_{ii}| = 1$ for all i. In short notation $S \in S(\mathbb{K}) : \iff S \in M_n(\mathbb{K})$ and $|S| = I$. For $\mathbb{K} = \mathbb{R}_+$ this is just the identity matrix I, for $\mathbb{K} = \mathbb{R}$ the set of $S = \text{diag}(\pm1)$ or diagonal orthogonal, and for $\mathbb{K} = \mathbb{C}$ the set of diagonal unitary matrices. Obviously, for $y \in \mathbb{K}^n$ there is $S \in S(\mathbb{K})$ with $Sy \succeq 0$. In case $|y| > 0$, this S is uniquely determined. Note that $S^{-1} = S^* \in S(\mathbb{K})$ for all $S \in S(\mathbb{K})$.

By definition (1.1) there is $y \in \mathbb{K}^n$ with $|Ay| = |ry| = r|y|$ for $r := \rho^K(A)$, and therefore for $\mathbb{K} \in \{ \mathbb{R}_+, \mathbb{R}, \mathbb{C} \}$,

$$(1.2) \quad \exists S \in S(\mathbb{K}), \exists 0 \neq y \in \mathbb{K}^n : SAy = ry$$

∗Received by the editors on 20 April 2002. Final manuscript accepted on 7 June 2002. Handling editor: Ludwig Elsner.
†Institut für Informatik III, Technical University Hamburg-Harburg, Schwarzenbergstr. 95, 21071 Hamburg, Germany (rump@tu-harburg.de).
and
\begin{equation}
\exists S_1, S_2 \in S(\mathbb{K}), \ \exists x \geq 0, x \neq 0 : S_1 AS_2 x = rx.
\end{equation}

Among the variational characterizations of the Perron root are
\begin{equation}
\max_{x \geq 0} \min_{x, \neq 0} \frac{(Ax)_i}{x_i} = \rho^{\mathbb{R}^+}(A) = \rho(A) = \inf_{x \geq 0} \max_{i} \frac{(Ax)_i}{x_i} \text{ for } A \geq 0
\end{equation}
and
\begin{equation}
\max_{y \geq 0} \min_{y, \neq 0} \frac{y^T Ax}{y^T x} = \rho(A) = \min_{y \geq 0} \max_{y, \neq 0} \frac{y^T Ax}{y^T x} \text{ for } A \geq 0.
\end{equation}

The purpose of this paper is to prove a generalization of both characterizations for the generalized spectral radius.

We note that the only non-obvious property of the generalized spectral radius we use is [6, Corollary 2.4]
\begin{equation}
\rho^{\mathbb{K}}(A|\mu|) \leq \rho^{\mathbb{K}}(A) \text{ for } \mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}, A \in M_n(\mathbb{K}) \text{ and } \mu \subseteq \{1, \ldots, n\}.
\end{equation}

2. Variational characterizations. For the following results we need three preparatory lemmata, the first showing that for $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ there exists a generalized eigenvector in every orthant.

Lemma 2.1. Let $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ and $A \in M_n(\mathbb{K})$ be given. Then
\[\forall S \in S(\mathbb{K}), \exists 0 \neq z \in \mathbb{K}^n, \exists \lambda \in \mathbb{R}^+_0 : S z \geq 0, |Az| = \lambda |z|. \]

Remark 2.2. The condition $S z \geq 0$ for $z \in \mathbb{K}^n$ means $S z \in \mathbb{R}^n$ and $S z \geq 0$, or shortly $S z \in \mathbb{R}^+_n$. Note that Lemma 2.1 is also true for $\mathbb{K} = \mathbb{R}^+_0$, in which case $S \in S(\mathbb{K})$ implies $S = I$.

Proof of Lemma 2.1. Let fixed $S \in S(\mathbb{K})$ be given and define $O := \{z \in \mathbb{K}^n : \|z\|_1 = 1, S z \geq 0\}$. The set O is nonempty, compact and convex. If there exists some $z \in O$ with $A z = 0$ we are finished with $\lambda = 0$. Suppose $A z \neq 0$ for all $z \in O$ and define $\varphi(x) := \|A x\|_1^{-1} \cdot S^* |A x|$. Then φ is well-defined and continuous on O, and $\varphi : O \to O$, such that by Brouwer’s theorem there exists a fixed point $z \in O$ with $\varphi(z) = \|A z\|_1^{-1} \cdot S^* |A z| = z$. Then $|Az| = \lambda S z = \lambda |z|$ with $\lambda = \|A z\|_1$.

The next lemma states a property of vectors out of the interior of a certain orthant.

Lemma 2.3. Let $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$, $A \in M_n(\mathbb{K})$ and define $r := \rho^{\mathbb{K}}(A)$. Then
\[\forall S \in S(\mathbb{K}), \forall \varepsilon > 0, \exists z \in \mathbb{K}^n : S z > 0, |Az| \leq (r + \varepsilon) \cdot |z|. \]

Proof. We proceed by induction. For $n = 1$, it is $r = |A_{11}| \in \mathbb{R}^+_0$, and $z := \text{sign}(S_{11}) \in \mathbb{K}$ does the job. Suppose the lemma is proved for dimension less than n. For given $S \in S(\mathbb{K})$ there exists by Lemma 2.1 some $0 \neq z \in \mathbb{K}^n$ and $\lambda \in \mathbb{R}^+_0$ with $S z \geq 0$
and $|Az| = \lambda |z|$. Then $\lambda \leq r$ by definition (1.1). If $Sz > 0$ we are finished. Let
$\mu := \{ j : z_j \neq 0 \}$ and let $\mathcal{P} := \{1, \ldots, n\} \setminus \mu$ such that
\[
\begin{bmatrix} T & U \\ V & W \end{bmatrix} \begin{bmatrix} x \\ 0 \end{bmatrix} = \lambda \begin{bmatrix} x \\ 0 \end{bmatrix}
\]
with $T = A[\mu]$, $U = A[\mu, \mathcal{P}]$, $V = A[\mathcal{P}, \mu]$, $W = A[\mathcal{P}, \mathcal{P}]$, $z[\mu] = x$ and $z[\mathcal{P}] = 0.$

Then $|Tx| = \lambda |x|$, $Vx = 0$ and $|x| > 0$.

By the induction hypothesis there exists $y' \in K[\mathcal{P}]$ with $S[\mathcal{P}]y' > 0$ and
$|Wy' | \leq (\rho^K(W) + \varepsilon)|y'| \leq (r + \varepsilon)|y'|$,
where the latter inequality follows by (1.5). Define
\[
\alpha := \begin{cases}
\min_i \frac{|x_i|}{(Uy')_i} & \text{for } Uy' \neq 0 \\
1 & \text{otherwise,}
\end{cases}
\]
and set $y := \alpha y'$. Then $|y| > 0$ and
\[
\begin{bmatrix} x \\ \varepsilon y \end{bmatrix} = \begin{bmatrix} Tx + \varepsilon Uy \\ \varepsilon Wy \end{bmatrix} \leq \begin{bmatrix} \lambda |x| + \varepsilon \alpha |Uy'| \\ \varepsilon \alpha (r + \varepsilon)|y'| \end{bmatrix} \leq (r + \varepsilon) \begin{bmatrix} |x| \\ \varepsilon |y'| \end{bmatrix}.
\]

The above lemma is obviously not true when replacing $r + \varepsilon$ by r, as the example
$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 0 \end{bmatrix}$ with $\rho^K(A) = 1$ for $K \in \{\mathbb{R}, \mathbb{R}, \mathbb{C}\}$ shows. It is, at least for $K = \mathbb{R}$,
also not valid for irreducible $|A|$. Consider
\[
A = \begin{bmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0 \end{bmatrix}.
\]

It has been shown in [5, Lemma 5.6] that $\rho^\mathbb{R}(A) = 1$. We show that $|Au| \leq u$ is not
possible for $u > 0$. Set $u := (x, y, z)^T$, then $|Au| \leq u$ is equivalent to
\[
-x \leq y + z \leq x \\
-y \leq -x + z \leq y \\
-z \leq -x - y \leq z.
\]

The second and third row imply that
\[
x \leq y + z \quad \text{and} \quad y \leq -x + z,
\]
and by the first and second row,
\[
x = y + z \quad \text{and} \quad y = -x + z
\]
so that $y = x - z = -x + z$ and therefore $y = 0$, which means u cannot be positive.
Variational Characterizations of the Generalized Spectral Radius

Third, we need a generalization of a theorem by Collatz [3, Section 2] to the complex case.

Lemma 2.4. Let \(A \in M_n(\mathbb{C}) \), \(A^* z = \lambda z \) for \(0 \neq z \in \mathbb{R}^n \), \(\lambda \in \mathbb{C} \). Then for all \(x \in \mathbb{R}^n \) with \(|x| > 0 \) and \(x_i z_i \geq 0 \) for all \(i \) the following estimations hold true:

\[
\begin{align*}
\min \Re \mu_i & \leq \Re \lambda \leq \max \Re \mu_i, \\
\min \Im \mu_i & \leq \Im \lambda \leq \max \Im \mu_i,
\end{align*}
\]

where \(\mu_i := (Ax)_i / x_i \), for \(1 \leq i \leq n \).

Remark 2.5. Note that \(x \) and the left eigenvector \(z \) of \(A \) are assumed to be real.

Proof of Lemma 2.4. Similar to Collatz’s original proof for the case \(A \geq 0 \) we note that

\[
\sum (\lambda - \mu_i) x_i z_i = \sum x_i (A^* z)_i - \sum (Ax)_i z_i = x^* A^* z - z^* Ax = 0,
\]

the latter because \(x \) and \(z \) are real. Now \(x_i z_i \) are real nonnegative for all \(i \), and by \(|x| > 0 \) not all products \(x_i z_i \) can be zero. The assertion follows.

With these preparations we can prove the first two-sided characterization of \(\rho^K \).

Theorem 2.6. Let \(K \in \{\mathbb{R}_+, \mathbb{R}, \mathbb{C}\} \) and \(A \in M_n(K) \). Then

\[
(2.1) \quad \max_{S \in S(K)} \max_{x \in K^n, \ x \neq 0} \min_{x_i \geq 0} \left| \frac{(Ax)_i}{x_i} \right| = \rho^K(A) = \max_{S \in S(K)} \inf_{x \in K^n} \max_{x_i \geq 0} \left| \frac{(Ax)_i}{x_i} \right|.
\]

Remark 2.7. The characterization is almost identical to the classical Perron-Frobenius characterization (1.4). The difference is that for nonnegative \(A \) the nonnegative orthant is the generic one, and vectors \(x \) can be restricted to this generic orthant. For general real or complex matrices, there is no longer a generic orthant, and therefore the max-min and inf-max characterization is maximized over all orthants. Note that in the left hand side the two maximums can be replaced by \(\max_{x \in K^n} \), but are separated for didactic purposes.

Proof of Theorem 2.6. The result is well-known for \(K = \mathbb{R}_+ \), and the left equality was shown in [5, Theorem 3.1] for \(K = \mathbb{R} \), and for \(K = \mathbb{C} \) it was shown in a different context in [4] and [2]; see also [6, Theorem 2.3]. We need to prove the right equality for \(K \in \{\mathbb{R}, \mathbb{C}\} \). Let \(S \in S(K) \) be fixed but arbitrary and denote \(r := \rho^K(A) \). By Lemma 2.3, for every \(\varepsilon > 0 \) there exists some \(x \in K^n \) with \(Sx > 0 \) and \(|Ax| \leq (r + \varepsilon)|x| \), so that \(r \) is larger than or equal to the r.h.s. of (2.1). We will show \(r \) is less than or equal to the r.h.s. of (2.1) to finish the proof. By (1.3) and \(\rho^K(A^*) = \rho^K(A) \) there is \(S_1, S_2 \in S(K) \) and \(0 \neq z \in \mathbb{R}^n \) with \(z \geq 0 \) and \(S_1 A^* S_2 z = rz \). Then for any \(x \in K^n \) with \(S_1 x > 0 \), Lemma 2.4 implies that

\[
\max_i \left| \frac{(Ax)_i}{x_i} \right| = \max_i \left| \frac{(S^*_2 A S^*_1) \cdot S_1 x)_i}{(S_1 x)_i} \right| \geq \Re r = r.
\]

Finally we give a second two-sided characterization of the generalized spectral radius.
Theorem 2.8. Let $K \in \{\mathbb{R}_+, \mathbb{R}, \mathbb{C}\}$ and $A \in M_n(K)$. Then
\[
\max_{S_1, S_2 \in S(K)} \min_{x \in K^n} \frac{|y^* A x|}{|y^*| |x|} = \rho^K(A) = \max_{S_1, S_2 \in S(K)} \min_{x \in K^n} \frac{|y^* A x|}{|y^*| |x|}.
\]

Proof. Let, according to (1.2), $SAx = rx$ for $S \in S(K)$, $0 \neq x \in K^n$ and $r = \rho^K(A)$. Define S_1 such that $S_1 x \geq 0$ and set $S_2 = S_1 S$. Then for every $y \in K^n$ with $S_2 y \geq 0$ and $|y^*| |x| \neq 0$, it is $S_1 x = |x|$, $S_2 y = |y|$, $S_2 S_1 S = I$ and
\[
y^* A x = y^* S_1^* S_1 S A x = r y^* S_1^* S_1 x = r y^* |x|,
\]

That means for the specific choice of S_1, S_2 and x, the ratio $|y^* A x|/(|y^*| |x|)$ is equal to r independent of the choice of y provided $S_2 y \geq 0$. Therefore, both the left and the right hand side of (2.2) are greater than or equal to $r = \rho^K(A)$. This proves also that the extrema are actually achieved.

On the other hand, let $S_1, S_2 \in S(K)$ and $x \in K^n$, $S_1 x \geq 0$ be fixed but arbitrarily given. Denote $\mu := \{j: x_j \neq 0\}$, $k := |\mu|$, and $\overline{\tau} := \{1, \ldots, n\} \setminus \mu$. By Lemma 2.1, there exists $\tilde{y} \in K^k$ with $\tilde{y} \neq 0$, $S_2 |\mu| \tilde{y} \geq 0$ and $|A^*| |\mu| \cdot |\tilde{y}| = \lambda |\tilde{y}|$ for $\lambda \geq 0$. Therefore $\rho^K(A^*|\mu|) = \rho^K(A|\mu|)$. Define $y \in K^n$ by $y|\mu| := \tilde{y}$ and $y|\overline{\tau}| := 0$. Then $|y^*| |x| = |y| |\mu| |x| |\mu| \neq 0$ and $x|\overline{\tau}| = 0$ imply that
\[
|y^* A x| = |y| |\mu| A |\mu| |x| |\mu| \leq |y| |\mu| A |\mu| |x| |\mu| = \lambda |y| |\mu| |x| |\mu| = \lambda |y^*| |x|.
\]

By (1.5),
\[
\frac{|y^* A x|}{|y^*| |x|} \leq \lambda \leq \rho^K(A).
\]

Therefore, for that choice of y (depending on S_1, S_2 and x) the left hand side of (2.2) is less than or equal to $\rho^K(A)$. It remains to prove that the right hand side of (2.2) is less than or equal to $\rho^K(A)$. Let S_1, S_2 be given, fixed but arbitrary. By Lemma 2.1, there exists $0 \neq y \in K^n$ with $S_2 y \geq 0$ and $|A^* y| = \lambda |y|$ for $\lambda \in \mathbb{R}_+$. Then for all $x \in K^n$,
\[
|y^* A x| \leq |y^* A| |x| = \lambda |y^*| |x|,
\]

such that for that choice of y (depending on S_1, S_2) the ratio $|y^* A x|/(|y^*| |x|)$ is less than or equal to λ for all $x \in K^n$ with $|y^*| |x| \neq 0$. It follows that the right hand side of (2.2) is less than or equal to $\lambda \leq \rho^K(A^*) = \rho^K(A)$, and the proof is finished.

We note that Theorem 2.8 and its proof cover the case $K = \mathbb{R}_+$, where in this case $S(\mathbb{R}_+)$ consists only of the identity matrix. That means for general $A \geq 0$,
\[
\max_{x \geq 0} \min_{y \geq 0} \frac{y^T A x}{y^T x} = \rho(A) = \min_{y \geq 0} \max_{x \geq 0} \frac{y^T A x}{y^T x}.
\]
Finally we note that for the classical Perron-Frobenius theory this characterization is mentioned without proof in the classical book by Varga [7] for irreducible matrices. As in other textbooks, the result is referenced as if it were included in [1], where in turn we only found a reference to an internal report.

REFERENCES