The Laplacian quadratic form and edge connectivity of a graph

William E. Watkins
California State University - Northridge, bill.watkins@csun.edu

Follow this and additional works at: http://repository.uwyo.edu/ela

Part of the Physical Sciences and Mathematics Commons

Recommended Citation
DOI: https://doi.org/10.13001/1081-3810.3038

This Article is brought to you for free and open access by Wyoming Scholars Repository. It has been accepted for inclusion in Electronic Journal of Linear Algebra by an authorized editor of Wyoming Scholars Repository. For more information, please contact scholcom@uwyo.edu.
THE LAPLACIAN QUADRATIC FORM AND EDGE CONNECTIVITY OF A GRAPH

WILLIAM WATKINS†

Abstract. Let G be a simple connected graph with associated positive semidefinite integral quadratic form $Q(x) = \sum (x(i) - x(j))^2$, where the sum is taken over all edges ij of G. It is showed that the minimum positive value of $Q(x)$ for $x \in \mathbb{Z}^n$ equals the edge connectivity of G. By restricting $Q(x)$ to $x \in \mathbb{Z}^n - 1 \times \{0\}$, the quadratic form becomes positive definite. It is also showed that the number of minimal disconnecting sets of edges of G equals twice the number of vectors $x \in \mathbb{Z}^{n-1} \times \{0\}$ for which the form Q attains its minimum positive value.

Key words. Graph, Laplacian matrix, Edge connectivity, Integral quadratic form.

AMS subject classifications. 05C50, 15A63, 15B36.

1. Statement of results. Let G be a simple connected graph (no loops or multiple edges). The vertex set for G is $V(G) = \{1, 2, \ldots, n\}$ and the edge set is denoted by $E(G)$. The Laplacian quadratic form associated with G is defined by:

$$Q(x) = \sum_{ij \in E(G)} (x(i) - x(j))^2,$$

for $x = (x(1), \ldots, x(n)) \in \mathbb{Z}^n$. The matrix for this quadratic form is the Laplacian matrix $L(G)$ for the graph. See [2] for a survey of results about the Laplacian matrix.

A set of t edges $E = \{ij_1, \ldots, ij_t\}$ of G disconnects G if the graph $G' = G - E$, obtained by removing these edges from G, is not connected. And the edge connectivity of G is the fewest number of edges that disconnect G. We call such a set of edges a minimal disconnecting set of edges of G.

Theorem 1.1. Let G be a simple connected graph. Then the least positive value of $Q(x)$ for $x \in \mathbb{Z}^n$ equals the edge connectivity of G.

Let k be the common value of the least positive value of $Q(x)$ and the edge connectivity of G. The next theorem compares the number of minimal disconnecting sets of edges

*Received by the editors on June 14, 2015. Accepted for publication on July 12, 2015. Handling Editor: Leslie Hogben.
†Department of Mathematics, California State University, Northridge, Northridge, California 91330-8313, USA (bill.watkins@csun.edu).
ELA

438 W. Watkins

of G with the number of integral vectors $x = (x(1), x(2), \ldots, x(n-1), 0)$ for which $Q(x) = k$.

Theorem 1.2. Let G be a simple connected graph and let k be the edge connectivity of G. Then the number of vectors $x \in \mathbb{Z}^n$ with $x(n) = 0$ such that $Q(x) = k$ is twice the number of minimal disconnecting sets of edges of G.

The restriction of the vectors $x \in \mathbb{Z}^n$ to those with $x(n) = 0$ is necessary because $Q(x)$ is not positive definite. Indeed its null space is spanned by the all-ones vector $e = (1, 1, \ldots, 1)$ and so if $Q(x) = k$ then $Q(x + ze) = k$ for every integer z. Thus, there are infinitely many vectors y in \mathbb{Z}^n for which $Q(y) = k$. But the restriction of the quadratic form to $\mathbb{Z} = \{x \in \mathbb{Z}^n : x(n) = 0\}$ is positive definite, which implies that there are only finitely many vectors $y \in \mathbb{Z}$ such that $Q(y) = k$. Furthermore, the positive integers represented by Q over \mathbb{Z}^n are the same as those represented by Q over \mathbb{Z} because $Q(x) = Q(y)$ for $y = x - x(n)e \in \mathbb{Z}$.

Before proceeding to the proofs, we insert a few remarks about the relationship between the quadratic form Q and its restriction to \mathbb{Z}. If we view the restriction as a quadratic form over $(x(1), x(2), \ldots, x(n-1)) \in \mathbb{Z}^{n-1}$, then its matrix is the principal sub matrix of the Laplacian $L(G)$ in rows and columns $1, 2, \ldots, n-1$. The famous matrix tree theorem of Kirchhoff [1, 2] states that the determinant of every $(n-1) \times (n-1)$ sub matrix of $L(G)$ equals plus or minus the number of spanning trees of G. In addition, all of the $(n-1) \times (n-1)$ principal sub matrices of $L(G)$ are congruent to each other by a unimodular matrix [3, 4]. So there is nothing special about restricting Q to vectors with $x(n) = 0$. Indeed, if we restrict Q by taking $x \in \mathbb{Z}^n$ with $x(i) = 0$ for some other vertex i instead of $x(n) = 0$, all of the resulting quadratic forms are equivalent to each other.

We should also note that the Laplacian matrices $L(G_1), L(G_2)$ are congruent by a unimodular matrix if and only if the graphs G_1, G_2 are cycle isomorphic [3, 4]. Thus, every invariant for unimodular congruence is shared by all graphs in the same cycle-isomorphism class.

2. Proofs. Let G be a simple connected graph, k be the edge connectivity of G, and m be the minimum positive integer represented by Q. The general outline for the proofs is to show that $m = k$ and that if $Q(x) = m$ for $x \in \mathbb{Z}$ then all the coordinates of x are either in $\{0, 1\}$ or all are in $\{0, -1\}$. Then we establish a bijection between the minimal disconnecting sets of edges of G and the vectors $x \in \{0, 1\}^{n-1} \times \{0\}$ with $Q(x) = m$. This will prove Theorem 1.2 because if $Q(x) = m$ for some $x \in \mathbb{Z}$ then
$Q(-x) = m$ as well. Thus, every pair of vectors $\pm x$ with $Q(x) = m$ corresponds to a minimal disconnecting set of edges of G.

2.1. A lemma from graph theory. We need the following lemma about connected graphs:

Lemma 2.1. Let G be a simple connected graph and $E = \{i_1j_1, \ldots, i_kj_k\}$ be a minimal disconnecting set of edges of G. Then the graph $G' = G - E$ obtained by removing the edges in E has exactly two connected components.

Proof. Since E disconnects G, G' has at least two components. Suppose it has more than two components. The vertices i_k, j_k are in just one or two of the components leaving a third component whose vertices do not include either i_k or j_k. It follows that this third component is still a component of the subgraph $G'' = G - \{i_1j_1, \ldots, i_{k-1}j_{k-1}\}$. Thus, $\{i_1j_1, \ldots, i_{k-1}j_{k-1}\}$ disconnects G, which contradicts the minimality of k. \(\square\)

2.2. Notation. We use the following notation: For a positive integer l, let

\[\mathcal{X}(l) = \{ x \in \{0,1\}^{n-1} \times \{0\} : Q(x) = l \}, \]

\[\mathcal{E}(l) = \{ E \subseteq E(G) : E \text{ disconnects } G \text{ and } |E| = l \}. \]

Of course, $\mathcal{X}(l)$ is empty if $l < m$ and $\mathcal{E}(l)$ is empty if $l < k$. Later we will show that $\mathcal{X}(m)$ is not empty. That is, there is a $(0,1)$ vector x with $Q(x) = m$.

For each $x \in \{0,1\}^{n-1} \times \{0\}$, partition the vertices of G into two sets:

\[V_0(x) = \{ i \in \{1,2,\ldots,n\} : x(i) = 0 \}, \]

\[V_1(x) = \{ i \in \{1,2,\ldots,n\} : x(i) = 1 \}, \]

and the edges of G into three sets:

\[E_0(x) = \{ ij \in E(G) : x(i) = x(j) = 0 \}, \]

\[E_1(x) = \{ ij \in E(G) : x(i) = x(j) = 1 \}, \]

\[E_{01}(x) = \{ ij \in E(G) : x(i) = 0 \text{ and } x(j) = 1, \text{ or } x(i) = 1 \text{ and } x(j) = 0 \}. \]

One thing is already clear: If $x \in \{0,1\}^{n-1} \times \{0\}$ then

\[|E_{01}(x)| = Q(x). \] (2.1)

Since $E_0(x)$, $E_1(x)$, $E_{01}(x)$ partition the edges of G, the sum $\sum (x(i) - x(j))^2$ over all edges ij of G equals the sum of three sums: Over edges in $E_0(x)$, edges in $E_1(x)$ and edges in $E_{01}(x)$. The first and second sums are zero and the third sum equals $|E_{01}(x)|$.

2.3. The map \(\theta : \mathcal{E}(k) \to \mathcal{X}(k) \). Let \(k \) be the edge connectivity of \(G \) and let \(E \in \mathcal{E}(k) \) be a minimal disconnecting set of edges of \(G \). By Lemma 2.1, the subgraph \(G' = G - E \) has two connected components, \(H_0, H_1 \). To be definite we take \(H_0 \) to be the component containing vertex \(n \). Define \(x_E \in \{0,1\}^{n-1} \times \{0\} \) by

\[
x_E(i) = \begin{cases}
0, & \text{if } i \text{ is a vertex of } H_0, \\
1, & \text{if } i \text{ is a vertex of } H_1.
\end{cases}
\]

The edges of \(G \) are partitioned by the edges of \(H_0 \), the edges of \(H_1 \), and \(E \). Thus, \(Q(x_E) = |E| = k \). So, \(x_E \in \mathcal{X}(k) \) and the function \(E \to x_E \) maps \(\mathcal{E}(k) \) into \(\mathcal{X}(k) \). It follows from the minimality of \(E \) that \(m \leq k \).

2.4. \(\mathcal{X}(m) \) is not empty. Again let \(m \) be the minimum positive integer represented by \(Q \), say \(Q(x) = m \) for some \(x \in \mathcal{Z} \). Define a zero-one vector \(y \) by \(y(i) = 0 \) whenever \(x(i) \) is even and \(y(i) = 1 \) whenever \(x(i) \) is odd. Since \(x(n) = 0 \) is even, \(y(n) = 0 \). Now \(y \neq 0 \) because if all the coordinates of \(x \) are even, then \(x/2 \in \mathcal{Z} \) and \(Q(x/2) = m/4 \), which contradicts the minimality of \(m \). Clearly, \(Q(y) \leq Q(x) = m \). Since \(y \neq 0 \) and \(m \) is minimal we have \(Q(y) = m \). That is \(y \in \mathcal{X}(m) \), which shows that \(\mathcal{X}(m) \) is not empty.

2.5. \(m = k \). Let \(y \) be any vector in \(\mathcal{X}(m) \). Then \(E_{01}(y) \) is a disconnecting set of edges of \(G \) and (by Equation (2.1)) \(|E_{01}(y)| = Q(y) = m \). From the minimality of \(k \), we have \(k \leq m \). Therefore, \(k = m \) and Theorem 1.1 is proved.

From here on we use \(k \) to denote both the minimum positive value of \(Q(x) \) and the edge connectivity of \(G \).

2.6. \(\theta : \mathcal{E}(k) \to \mathcal{X}(k), x \to x_E \) is one-to-one. Let \(E, F \) be disconnecting sets of edges in \(\mathcal{E}(k) \) with \(x_E = x_F \). Then

\[
G - E = H_0 + H_1, \\
G - F = K_0 + K_1,
\]

where \(H_0, H_1 \) are the components of \(G - E \), \(K_0, K_1 \) are the components of \(G - F \), and \(n \) is a vertex in \(H_0 \) and \(K_0 \). Since \(x_E = x_F \) we have \(i \in V(H_0) \) if and only if \(i \in V(K_0) \). Thus, \(V(H_0) = V(K_0) \). The edges of \(H_0 \) are just the edges \(ij \) of \(G \) with \(i, j \in V(H_0) \). It follows that \(E(H_0) = E(K_0) \). Similarly \(E(H_1) = E(K_1) \). The edges of \(G \) are partitioned in two ways

\[
E(G) = E(H_0) \cup E(H_1) \cup E, \\
E(G) = E(K_0) \cup E(K_1) \cup F.
\]

Thus, \(E = F \).
2.7. **θ : E(k) → X(k), x ↦ x_E is onto.** Let \(x \in X(k) \). We must show that there exists \(E \in E(k) \) such that \(x = x_E \). The obvious, and correct, candidate is \(E = E_{00}(x) \).

Let \(H_i(x) \) be the subgraph of \(G \) with vertices \(V_i(x) \) and edges \(E_i(x) \) for \(i = 1, 2 \). Clearly, \(H_0(x), H_1(x) \) are the components of \(G' = G - E \). So \(x_E(ij) = 0 \) if and only if \(i \) is a vertex of \(H_0(x) \). Also \(x(i) = 0 \) if and only if \(i \in V_0(x) = V(H_0) \). So \(x_E = x \) and \(θ \) maps \(E(k) \) onto \(X(k) \).

We have proved that \(|E(k)| = |X(k)|\).

2.8. **If \(x \in X \) and \(Q(x) = k \) then \(x \in X(k) \) or \(-x \in X(k) \).** In this section, we show that the only vectors \(x \in X \) for which \(Q \) achieves the minimum positive value \(k \) are those all of whose coordinates are in \(\{0, 1\} \) or all are in \(\{0, -1\} \).

Suppose \(x \in X \) and \(Q(x) = k \). Define a vector \(y \in \{0, 1\}^{n-1} \times \{0\} \) by

\[
y(i) = \begin{cases}
0 & \text{if } x(i) \text{ is even}, \\
1 & \text{if } x(i) \text{ is odd}.
\end{cases}
\]

Arguing as in Section 2.5, we get \(y \neq 0 \). Now partition the edges of \(G \) into three sets, \(E_0(y), E_1(y), \) and \(E_{01}(y) \). It is clear that \((y(i) - y(j))^2 \leq (x(i) - x(j))^2 \), for all \(i, j \).

Therefore, we have the following inequalities for the sums:

\[
0 = \sum_{ij \in E_0(y)} (y(i) - y(j))^2 \leq \sum_{ij \in E_0(y)} (x(i) - x(j))^2 \\
0 = \sum_{ij \in E_1(y)} (y(i) - y(j))^2 \leq \sum_{ij \in E_1(y)} (x(i) - x(j))^2 \\
k = \sum_{ij \in E_{01}(y)} (y(i) - y(j))^2 \leq \sum_{ij \in E_{01}(y)} (x(i) - x(j))^2.
\]

But \(Q(x) \), which is the sum of the three sums above on the right, equals \(k \). Therefore, \(Q(y) = k \) and \(y \in X(k) \). In addition, we have equality for each of the three inequalities. This shows that \(x(i) = x(j) \) for all \(ij \in E_0(y) \), \(x(i) = x(j) \) for all \(ij \in E_1(y) \), and \(|x(i) - x(j)| = 1 \) for all \(ij \in E_{01}(y) \).

We now show that there is an integer \(a \) such that \(x(i) = a \) for all \(i \in V_0(y) \) and an integer \(b \) such that \(x(i) = b \) for all \(i \in V_1(y) \). The set of edges \(E_{01}(y) \) disconnects \(G \) and it is a minimal disconnecting set (\(|E_{01}(y)| = k\)). Lemma 2.4 applies so \(G' = G - E_{01}(y) = H_0 + H_1 \) where \(H_0, H_1 \) are the connected components of \(G' \) and \(n \) is a vertex of \(H_0 \). It is clear that \(V(H_i) = V_i(y) \) and \(E(H_i) = E_i(y) \) for \(i = 1, 2 \).

Because \(H_0 \) is connected, there is a path joining any two vertices in \(H_0 \). But \(x(i) = x(j) \) for any edge \(ij \) in \(E_0(y) = E(H_0) \). It follows that there is an integer \(a \) such that \(x(i) = a \) for all \(i \in V(H_0) = V_0(y) \). Likewise there is an integer \(b \) such that \(x(i) = b \).
for all \(i \in V(H_1) = V_1(y) \). Now \(x(n) = 0 \) and \(n \in V(H_0) \), so \(a = 0 \). There is at least one edge \(ij \) in \(E_{01}(y) \) or else \(G \) is not connected. By adjusting the notation we may suppose that \(i \) is a vertex in \(H_0 \) and \(j \) a vertex in \(H_1 \) for this edge in \(E_{01}(y) \). Therefore, \(1 = |x(i) - x(j)| = |0 - b| = 1 \). It follows that \(b = \pm 1 \) and therefore either \(x \in \mathcal{X}(k) \) or \(-x \in \mathcal{X}(k) \).

2.9. Conclusion. The preceding arguments show that for every \(x \in \mathcal{Z} \) with \(Q(x) = k \), either \(x \in \mathcal{X}(k) \) or \(-x \in \mathcal{X}(k) \). And that the number of minimal disconnecting sets for \(G \) equals the number of \(x \in \mathcal{X}(k) \) for which \(Q(x) = k \). Thus, the number of vectors \(x \) in \(\mathcal{Z} \) such that \(Q(x) = k \) is twice the number of minimal disconnecting sets of edges of \(G \). The proof of Theorem 1.2 is complete.

2.10. A combinatorial observation. The author wishes to thank the referee for this observation: If the vertices of a connected graph \(G \) are colored with two colors, 0 and 1, then the number of two-colored edges is at least the edge connectivity of \(G \) with equality if and only if the set of two-colored edges is a minimal disconnecting set of edges, \(E \). Indeed, the number of two-colored edges is just \(E_{01}(x_E) \) for the 0, 1 coloring vector \(x_E \).

REFERENCES