THE LAPLACIAN QUADRATIC FORM AND EDGE CONNECTIVITY OF A GRAPH

WILLIAM WATKINS†

Abstract. Let G be a simple connected graph with associated positive semidefinite integral quadratic form $Q(x) = \sum (x(i) - x(j))^2$, where the sum is taken over all edges ij of G. It is showed that the minimum positive value of $Q(x)$ for $x \in \mathbb{Z}^n$ equals the edge connectivity of G. By restricting $Q(x)$ to $x \in \mathbb{Z}^{n-1} \times \{0\}$, the quadratic form becomes positive definite. It is also showed that the number of minimal disconnecting sets of edges of G equals twice the number of vectors $x \in \mathbb{Z}^{n-1} \times \{0\}$ for which the form Q attains its minimum positive value.

Key words. Graph, Laplacian matrix, Edge connectivity, Integral quadratic form.

AMS subject classifications. 05C50, 15A63, 15B36.

*Received by the editors on June 14, 2015. Accepted for publication on July 12, 2015. Handling Editor: Leslie Hogben.
†Department of Mathematics, California State University, Northridge, Northridge, California 91330-8313, USA (bill.watkins@csun.edu).