2015

Extremal graphs for the sum of the two largest signless Laplacian eigenvalues

Carla Silva Oliveira
Escola Nacional de Ciencias Estatisticas, carla.oliveira@ibge.gov.br

Leonado de Lima
Centro Federal de Educacao Tecnologica Celso Suckow da Fonseca, leolima.geos@gmail.com

Paula Rama
Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, prama@ua.pt

Paula Carvalho
Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, paula.carvalho@ua.pt

Follow this and additional works at: http://repository.uwyo.edu/ela

Recommended Citation
Oliveira, Carla Silva; Lima, Leonado de; Rama, Paula; and Carvalho, Paula. (2015), "Extremal graphs for the sum of the two largest signless Laplacian eigenvalues", Electronic Journal of Linear Algebra, Volume 30, pp. 605-612.
DOI: https://doi.org/10.13001/1081-3810.3143

This Article is brought to you for free and open access by Wyoming Scholars Repository. It has been accepted for inclusion in Electronic Journal of Linear Algebra by an authorized editor of Wyoming Scholars Repository. For more information, please contact scholcom@uwyo.edu.
EXTREMAL GRAPHS FOR THE SUM OF THE TWO LARGEST SIGNLESS LAPLACIAN EIGENVALUES

CARLA SILVA OLIVEIRA†, LEONARDO DE LIMA‡, PAULA RAMA§, AND PAULA CARVALHO§

Abstract. Let G be a simple graph on n vertices and $e(G)$ edges. Consider the signless Laplacian, $Q(G) = D + A$, where A is the adjacency matrix and D is the diagonal matrix of the vertex degrees of G. Let $q_1(G)$ and $q_2(G)$ be the first and the second largest eigenvalues of $Q(G)$, respectively, and denote by S_n^+ the star graph with an additional edge. It is proved that inequality $q_1(G) + q_2(G) \leq e(G) + 3$ is tighter for the graph S_n^+ among all firefly graphs and also tighter to S_n^+ than to the graphs $K_k \vee K_{n-k}$ recently presented by Ashraf, Omidi and Tayfeh-Rezaie. Also, it is conjectured that S_n^+ minimizes $f(G) = e(G) - q_1(G) - q_2(G)$ among all graphs G on n vertices.

Key words. Signless Laplacian, Sum of eigenvalues, Extremal graphs.

AMS subject classifications. 05C50, 15A42.

1. Introduction. Given a simple graph G with vertex set $V(G)$ and edge set $E(G)$, let A be the adjacency matrix of G and D be the diagonal matrix of the row-sums of A, i.e., the degrees of G. The maximum degree of G is denoted by $\Delta = \Delta(G)$. Let $e(G) = |E(G)|$ be the number of edges and let $n = |V(G)|$ be the number of vertices of G. The matrix $Q(G) = A + D$ is called the signless Laplacian or the Q-matrix of G. As usual, we shall index the eigenvalues of $Q(G)$ in non-increasing order and denote them as $q_1(G), q_2(G), \ldots, q_n(G)$. Denote the graph obtained from the star on n vertices by inserting an additional edge by S_n^+; the complement of G by \overline{G} and the complete graph on n vertices by K_n. If $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are graphs on disjoint sets of vertices, their graph sum is $G_1 + G_2 = (V_1 \cup V_2, E_1 \cup E_2)$. The join $G_1 \vee G_2$ of G_1 and G_2 is the graph obtained from $G_1 + G_2$ by inserting
new edges from each vertex in \(G_1 \) to every vertex of \(G_2 \). Consider \(M(G) \) as a matrix of a graph \(G \) of order \(n \) and let \(k \) be a natural number such that \(1 \leq k \leq n \). A general question related to \(G \) and \(M(G) \) can be raised: "How large can the sum of the \(k \) largest eigenvalues of \(M(G) \) be?" Usually, solving cases \(k = 1, n - 1 \) and \(n \) are simple but the general case for any \(k \) is not easy to be solved. The natural next case to be studied is \(k = 2 \) and some work has been recently done in order to prove this case. For instance, Ebrahimi et al., \([6]\), for the adjacency matrix; Haemers et al., \([7]\), for the Laplacian matrix and Ashraf et al., \([2]\), for the signless Laplacian matrix. In particular, the latter denoted the sum of the two largest signless Laplacian by \(S_2(G) \) and proved that

\[
S_2(G) \leq e(G) + 3
\]

for any graph \(G \). Additionally, if \(G \) is isomorphic to \(K_k \vee K_t \) they show that \(e(G) + 3 - S_2(G) < 1/\sqrt{t} \). Consequently, inequality (1.1) is asymptotically tight.

Given a graph \(G \) with \(e(G) \) edges, define the function

\[
f(G) = e(G) + 3 - S_2(G).
\]

Since inequality (1.1) is asymptotically tight for the graphs \(K_k \vee K_t \), it means that \(f(K_k \vee K_t) \) converges to zero when \(n \) goes to infinity. In this paper, we prove the following facts:

(A) the function \(f(S^+_n) \) converges to zero when \(n \) goes to infinity and the graph \(S^+_n \) is the graph within the firefly graphs such that inequality (1.1) is asymptotically tight within the firefly graphs;

(B) the function \(f(S^+_n) \) converges to zero faster than \(f(K_k \vee K_t) \) does.

Additionally, based on computational experiments from AutoGraphiX \([3]\), we conjecture that \(S^+_n \) minimizes \(f(G) \) among all graphs \(G \) on \(n \) vertices.

2. Preliminaries. In this section, we present some known results about \(q_1(G) \) and \(q_2(G) \) and define some classes of graphs that will be useful to our purposes.

Definition 2.1. A firefly graph \(F_{r,s,t} \) is a graph on \(2r + s + 2t + 1 \) vertices that consists of \(r \) triangles, \(s \) pendant edges and \(t \) pendant paths of length 2, all of them sharing a common vertex.

Let \(v \) be a vertex of \(G \) and let \(P_{q+1} \) and \(P_{r+1} \) be two paths, say, \(v_q v_{q+1} v_{q+2} \cdots v_2 v_1 \) and \(u_{r+1} u_r u_{r-1} \cdots u_2 u_1 \). The graph \(G_{q,r} \) is obtained by identifying \(v_q v_{q+1} \) and \(u_{r+1} \) at the same vertex \(v \) of \(G \). The graph \(G_{q+1,r-1} \) can be obtained from \(G_{q,r} \) by removing the edge \((u_1, u_2)\) and placing the edge \((v_1, u_1)\).

The Figure 2.1 displays the firefly graphs and Figure 2.2 illustrates the grafting operation.
Extremal Graphs for the Sum of the Two Largest Signless Laplacian Eigenvalues

Fig. 2.1. Firefly graph $F_{r,s,t}$ with r triangles, s pendant vertices and t pendant paths of length 2.

Fig. 2.2. (a) $G_{q,r}$ (b) $G_{q+1,r-1}$ obtained by grafting an edge of $G_{q,r}$.

If G is connected with $e(G) = n + c - 1$, then G is called a $c-$cyclic graph.

Lemma 2.2. Suppose $c \geq 1$ and G is a $c-$cyclic graph on n vertices with $\Delta \leq n - 3$. If $n \geq 2c + 5$, then $q_1(G) \leq n - 1$.

Lemma 2.3. Let G be a connected graph on $n \geq 7$ vertices. Then

(i) $3 - \frac{2.5}{n} < q_2(G) < 3$ if and only if G is a firefly with one triangle.

(ii) $q_2(G) = 3$ if and only if G is a firefly and has at least two triangles.

Lemma 2.4. Let G be a connected graph on $n \geq 2$ vertices. For $q \geq r \geq 1$, consider the graphs $G_{q,r}$ and $G_{q+1,r-1}$. Then,

$$q_1(G_{q,r}) > q_1(G_{q+1,r-1}).$$

3. Main results. In this section, we present the proofs of facts (A) and (B) presented in the introduction. In order to prove fact (A), we firstly present Lemma 3.1. From this point on, we will use $F_{1,n-3,0}$ to denote the graph S^+_n since they are
isomorphic and e_i to denote the i-th standard unit basis vector for each $i = 1, \ldots, n$.

Lemma 3.1. Let G be isomorphic to $F_{1,n-3,0}$ with $n \geq 7$. Then

$$e(G) + 3 - \frac{2.5}{n} < S_2(G) < e(G) + 3.$$

Proof. The matrix $Q(G)$ can be written as

$$Q(G) = \begin{bmatrix} I + J & 1 & 0 \\ 1 & n-1 & 1 \\ 0^T & 1^T & I \end{bmatrix},$$

where the diagonal blocks are of orders 2, 1 and $n-3$, respectively. We find that $e_1 - e_2$ and $e_4 - e_j$, $5 \leq j \leq n$ are eigenvectors for $Q(G)$ corresponding to the eigenvalue 1. Consequently, we see that $Q(G)$ has 1 as an eigenvalue of multiplicity at least $n-3$.

Further, since $Q(G)$ has an orthogonal basis of eigenvectors, there are remaining eigenvectors of $Q(G)$ of the form

$$\begin{bmatrix} \alpha 1 \\ \beta \\ \gamma 1 \end{bmatrix}.$$

We then deduce that the eigenvalues of the 3×3 matrix $M = \begin{bmatrix} 3 & 1 & 0 \\ 2 & n-1 & n-3 \\ 0 & 1 & 1 \end{bmatrix}$ comprise the remaining three eigenvalues of $Q(G)$ that are the roots of the polynomial $\Psi(x) = x^3 - (n+3)x^2 + 3nx - 4$. As Ψ is a continuous function in \mathbb{R} and $\Psi(0) = -4 < 0$, $\Psi(1) = 2n - 6 > 0$, from [1], $\Psi(3 - \frac{2.5}{n}) > 0$, $\Psi(3 - \frac{1}{n}) = -1 - \frac{1}{n} + \frac{9}{n} - \frac{10}{n} < 0$, $\Psi(n) = -4 < 0$, and for $n \geq 7$, $\Psi(n + \frac{1}{n}) = -7 + \frac{1}{n} - \frac{3}{n} + \frac{3}{n} + \frac{2}{n} + n > 0$, so $3 - \frac{2.5}{n} < q_2(G) < 3 - \frac{1}{n}$ and $n < q_1(G) < n + \frac{1}{n}$ for $n \geq 7$. Thus, $e(G) + 3 - \frac{2.5}{n} < S_2(G) < e(G) + 3$.

From Lemma 3.1, one can easily see that function $f(F_{1,n-3,0})$ converges to zero when n goes to infinity. To complete the proof of the statement (A) we need to show that $F_{1,n-3,0}$ is the only firefly graph such that inequality (1.1) is asymptotically tight. The proof follows from Lemmas 3.2, 3.3 and 3.5.

Lemma 3.2. Let G be isomorphic to $F_{1,n-5,1}$ with $n \geq 9$. Then

$$e(G) + 2 - \frac{0.8}{\ln n} < S_2(G) < e(G) + 2.$$
Proof. The matrix $Q(G)$ can be written as

$$Q(G) = \begin{bmatrix}
2 & 1 & 1 & 0 & 0 & 0 & \ldots & 0 \\
1 & 2 & 1 & 0 & 0 & 0 & \ldots & 0 \\
1 & 1 & n-2 & 1 & 0 & 1 & \ldots & 1 \\
0 & 0 & 1 & 2 & 1 & 0 & \ldots & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots \\
0 & 0 & 1 & 0 & 0 & 0 & \ldots & 1
\end{bmatrix}.$$

We find that $e_6 - e_j$, $7 \leq j \leq n$ and $e_1 - e_2$ are eigenvectors for $Q(G)$ corresponding to eigenvalue 1. Consequently, we see that $Q(G)$ has 1 as an eigenvalue of multiplicity at least $n-5$. Further, since $Q(G)$ has an orthogonal basis of eigenvectors, it follows that there are remaining eigenvectors of $Q(G)$ of the form

$$\begin{bmatrix}
\alpha \\
\beta \\
\gamma \\
\xi \\
\varepsilon 1
\end{bmatrix}.$$

We deduce that the eigenvalues of 5×5 matrix

$$M = \begin{bmatrix}
3 & 1 & 0 & 0 & 0 \\
2 & n-2 & 1 & 0 & n-5 \\
0 & 1 & 2 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{bmatrix}$$

comprise the remaining five eigenvalues of $Q(G)$ that are the roots of the polynomial $\Psi(x) = x^5 - (n+5)x^4 + (6n+4)x^3 - (10n-2)x^2 + (3n+12)x - 4$. As Ψ is a continuous function in \mathbb{R}, there are three roots of $\Psi(x)$ in the intervals $[0, 0.3]$, $[0.3, 1]$ and $[1, 2.7]$. For the other two, as

$$\Psi \left(3 - \frac{0.8}{\ln n} \right) = -4 + (12 + 3n) \left(3 - \frac{0.8}{\ln n} \right) - (-2 + 10n) \left(3 - \frac{0.8}{\ln n} \right)^2 + (4 + 6n) \left(3 - \frac{0.8}{\ln n} \right)^3 - (5 + n) \left(3 - \frac{0.8}{\ln n} \right)^4 + \left(3 - \frac{0.8}{\ln n} \right)^5 > 0,$$

$$\Psi \left(3 - \frac{5}{4n} \right) = -\frac{1}{1024n^5} \left(3125 - 25000n + 70500n^2 - 72800n^3 + 12160n^4 + 256n^5 \right) < 0,$$
\[\Psi(n - 1) = -24 + 25n - 5n^2 < 0 \]

and

\[\Psi(n - 1 + \frac{5}{4n}) = \frac{1}{1024n^5} (3125 - 25000n + 78000n^2 - 140000n^3 + 178400n^4 - 142976n^5 + 75520n^6 - 17920n^7 + 1280n^8) > 0. \]

So, \(3 - \frac{0.8}{\ln n} < q_2(G) < 3 - \frac{5}{4n}\) and \(n - 1 < q_1(G) < n - 1 + \frac{5}{4n}\). Then,

\[e(G) + 2 - \frac{0.8}{\ln n} < S_2(G) < e(G) + 2. \]

From Lemma 3.2, one can easily see that function \(f(F_{1,n-5,1})\) converges to 1 when \(n\) goes to infinity.

Lemma 3.3. Let \(G\) be isomorphic to \(F_{1,s,t}\) a firefly graph such that \(s \geq 1\) and \(t \geq 2\). Then \(S_2(G) < e(G) + 2\).

Proof. From Lemma 2.2 we have \(q_1(G) \leq s + 2t + 2\) and from Lemma 2.3 \(q_2(G) < 3\). So, \(S_2(G) < s + 2t + 5 = e(G) + 2\).

From Lemma 3.3 follows that function \(f(F_{1,s,t})\) > 1 when \(s \geq 1\) and \(t \geq 2\).

Lemma 3.4. For \(2r + s + 1 \geq 6\) and \(r \geq 2\),

\(2r + s + 1 < q_1(F_{r,s,0}) < 2r + s + \frac{3}{2}\).

Proof. The signless Laplacian matrix of the graph \(F_{r,s,0}\) can be written as

\[
Q(F_{r,s,0}) = \begin{bmatrix}
2r + s & 1 & 1 \\
1^T & 1 & 0 \\
1^T & 0 & B
\end{bmatrix},
\]

where the diagonal blocks are of orders 1, \(s\) and \(2r\), respectively, and \(B\) is a diagonal block matrix and each block has order 2 of the type \(I + J\). We find that for each \(j = 3, \ldots, s + 1, e_2 - e_j\) is an eigenvector for \(Q(F_{r,s,0})\) corresponding to eigenvalue 1; also, for each \(k = 1, \ldots, r, e_{s+2k} - e_{s+2k+1}\) is an eigenvector for \(Q(F_{r,s,0})\) corresponding to eigenvalue 1. So, 1 is an eigenvalue with multiplicity at least \(r+s-1\). Further, since \(Q(F_{r,s,0})\) has an orthogonal basis of eigenvectors, it follows that there are remaining eigenvectors of \(Q(F_{r,s,0})\) of the form

\[
\begin{bmatrix}
\gamma \\
\alpha 1 \\
\beta 1
\end{bmatrix}.
\]
We then deduce that the eigenvalues of the 3×3 matrix

$$M = \begin{bmatrix} 2r + s & s & 2r \\ 1 & 1 & 0 \\ 1 & 0 & 3 \end{bmatrix}$$

comprise the remaining three eigenvalues of $Q_{F_{r,s,t}}$. The eigenvalues of M are the roots of the characteristic polynomial of M given by $g(x) = -(x^3 + (-s - 2r - 4)x^2 + (3s + 6r + 3)x - 4r)$. See that $g(2r + s + 1) > 0$ and $g(2r + s + 3/2) < 0$. Since $q_2(G) \leq n - 2 = 2r + s - 1$ and $q_1(G) \geq q_2(G)$, we get

$$2r + s + 1 < q_1(G) < 2r + s + \frac{3}{2}$$

Lemma 3.5. Let $G = F_{r,s,t}$ such that $r \geq 2$, $t, s \geq 1$. Then $S_2(G) \leq e(G) + 2.5$.

Proof. For firefly graphs $F_{r,s,t}$ such that $t \geq 1$, we can obtain any $F_{r,s,t}$ from grafting edges of the graph $F_{r,s,t}$. From Lemma 2.4 and Lemma 3.4 $q_1(F_{r,s,t}) < q_1(F_{r,s+2t,0}) < 2r + s + 2t + \frac{3}{2}$. Also, by Lemma 2.3 $q_2(F_{r,s,t}) = 3$ and we get $q_1(F_{r,s,t}) + q_2(F_{r,s,t}) < 2r + s + 2t + 4.5$. Observe that $e(F_{r,s+2t,0}) = 3r + s + 2t$ and then $2r + s + 2t + 4.5 = e(F_{r,s+2t,0}) + 2.5 + (2 - r) \leq e(F_{r,s+2t,0}) + 2.5$ for $r \geq 2$. So, $S_2(G) \leq e(G) + 2.5$. \[\square\]

From Lemma 3.5 follows that function $f(F_{r,s,t}) \geq 0.5$ when $r \geq 2$. The next proposition proves the statement (B) of the introduction.

Proposition 3.6. For $n \geq 9$ and $k \geq 2$, the function $f(F_{1,n-3,0})$ converges to zero faster than $f(K_k \vee \overline{K}_{n-k})$.

Proof. From Lemma 3.3 we have $0 < f(F_{1,n-3,0}) < \frac{25}{n}$ and from Remark 8 of [2], $0 < f(K_k \vee \overline{K}_{n-k}) < \frac{1}{\sqrt{n-k}}$. Noting that $\frac{25}{n} < \frac{1}{\sqrt{n-k}}$ for $k \geq 2$ completes the proof. \[\square\]

Therefore, we proved that inequality 1.1 is asymptotically tight for the graph $F_{1,n-3,0}$ within the firefly graphs on $n \geq 9$ vertices. Based on computational experiments with AutoGraphiX, we propose the following conjecture.

Conjecture 3.7. Let G be a graph on $n \geq 9$ vertices. Then

$$f(G) \geq f(F_{1,n-3,0}).$$

Equality holds if and only if G is isomorphic to $F_{1,n-3,0}$.

REFERENCES

