GROUPS OF MATRICES THAT ACT MONOPOTENTLY*

JOSHUA D. HEWS† AND LEO LIVSHITS‡

Abstract. In the present article, the authors continue the line of inquiry started by Cigler and Jerman, who studied the separation of eigenvalues of a matrix under an action of a matrix group. The authors consider groups G of matrices of the form $\begin{bmatrix} G & 0 \\ 0 & z \end{bmatrix}$, where z is a complex number, and the matrices G form an irreducible subgroup of $GL_n(\mathbb{C})$. When G is not essentially finite, the authors prove that for each invertible A the set GA contains a matrix with more than one eigenvalue.

The authors also consider groups G of matrices of the form $\begin{bmatrix} G & I \\ 0 & 1 \end{bmatrix}$, where the matrices G comprise a bounded irreducible subgroup of $GL_n(\mathbb{C})$. When G is not finite, the authors prove that for each invertible A the set GA contains a matrix with more than one eigenvalue.

Key words. Invertible matrices, Matrix groups, Distinct eigenvalues, Irreducible groups, Unitary group, Monopotent matrices.

AMS subject classifications. 15A18.

*Received by the editors on January 23, 2017. Accepted for publication on October 4, 2017. Handling Editor: Bryan L. Shader.

†Department of Mathematics and Statistics, Colby College, Waterville, Maine, USA. The work of this student author was generously supported by Colby College Summer Student Research Fund.

‡Department of Mathematics and Statistics, Colby College, Waterville, Maine, USA (llivshi@colby.edu).