LIGHTS OUT! ON CARTESIAN PRODUCTS*

TRAVIS PETERS†, JOHN GOLDWASSER‡, AND MICHAEL YOUNG†

Abstract. The game LIGHTS OUT! is played on a 5×5 square grid of buttons; each button may be on or off. Pressing a button changes the on/off state of the light of the button pressed and of all its vertical and horizontal neighbors. Given an initial configuration of buttons that are on, the object of the game is to turn all the lights out. The game can be generalized to arbitrary graphs. In this paper, Cartesian Product graphs (that is, graphs of the form $G \square H$, where G and H are arbitrary finite, simple graphs) are investigated. In particular, conditions for which $G \square H$ is universally solvable (every initial configuration of lights can be turned out by a finite sequence of button presses), using both closed neighborhood switching and open neighborhood switching, are provided.

Key words. Matrix, Determinant, Graph, Lights Out, Fibonacci polynomials.

AMS subject classifications. 05C50, 15A15, 15A03, 15B33.

*Received by the editors on January 30, 2017. Accepted for publication on November 26, 2017. Handling Editor: Bryan L. Shader.
†Department of Mathematics, Iowa State University, Ames, IA 50011, USA (tpeters@iastate.edu, myoung@iastate.edu).
‡Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA (jgoldwas@math.wvu.edu).