Positive solutions of the system of operator equations $A_1X=C_1, XA_2=C_2, A_3XA^*_3=C_3, A_4XA^*_4=C_4$ in Hilbert C^*-modules

Rasoul Eskandari
eskandarirasoul@yahoo.com

Xiaochun Fang
xfang@tongji.edu.cn

Mohammad Sal Moslehian
Ferdowsi University of Mashhad, moslehian@um.ac.ir

Qingxiang Xu
qxxu@shnu.edu.cn

Follow this and additional works at: https://repository.uwyo.edu/ela

Part of the Analysis Commons

Recommended Citation
Eskandari, Rasoul; Fang, Xiaochun; Moslehian, Mohammad Sal; and Xu, Qingxiang. (2018), "Positive solutions of the system of operator equations $A_1X=C_1, XA_2=C_2, A_3XA^*_3=C_3, A_4XA^*_4=C_4$ in Hilbert C^*-modules", Electronic Journal of Linear Algebra, Volume 34, pp. 381-388.

DOI: https://doi.org/10.13001/1081-3810.3600

This Article is brought to you for free and open access by Wyoming Scholars Repository. It has been accepted for inclusion in Electronic Journal of Linear Algebra by an authorized editor of Wyoming Scholars Repository. For more information, please contact scholcom@uwyo.edu.
POSITIVE SOLUTIONS OF THE SYSTEM OF OPERATOR EQUATIONS $A_1X = C_1$, $X A_2 = C_2$, $A_3 X A_3^* = C_3$, AND $A_4 X A_4^* = C_4$ IN HILBERT C^*-MODULES

RASOUL ESKANDARI†, XIAOCHUN FANG‡, MOHAMMAD SAL MOSLEHIAN§, AND QINGXIANG XU¶

Abstract. Necessary and sufficient conditions are given for the operator system $A_1X = C_1$, $X A_2 = C_2$, $A_3 X A_3^* = C_3$, and $A_4 X A_4^* = C_4$ to have a common positive solution, where A_i’s and C_i’s are adjointable operators on Hilbert C^*-modules. This corrects a published result by removing some gaps in its proof. Finally, a technical example is given to show that the proposed investigation in the setting of Hilbert C^*-modules is different from that of Hilbert spaces.

Key words. Hilbert C^*-module, Operator equation, Orthogonally complemented submodule.

AMS subject classifications. 15A24, 46L08, 47A05, 47A62.

1. Introduction. Let \mathfrak{A} be a C^*-algebra. A Hilbert \mathfrak{A}-module is a right \mathfrak{A}-module equipped with an \mathfrak{A}-valued inner product $\langle \cdot , \cdot \rangle : H \times H \to \mathfrak{A}$ such that H is complete with respect to the induced norm defined by $\| x \| = \| \langle x , x \rangle \|^{1/2}$ for $x \in H$. Suppose that H and K are Hilbert \mathfrak{A}-modules. Let $\mathcal{L}(H, K)$ be the set of maps $A : H \to K$ for which there is a map $A^* : K \to H$, called the adjoint operator of A, such that

$$\langle Ax , y \rangle = \langle x , A^* y \rangle \quad \text{ for each } x \in H \text{ and } y \in K.$$

It is known that each element A of $\mathcal{L}(H, K)$ must be a bounded linear operator, which is also \mathfrak{A}-linear in the sense that $A(xa) = (Ax)a$ for each $x \in H$ and $a \in \mathfrak{A}$. We use the notations $\mathcal{L}(H)$ and $\mathcal{L}(H)_+$ to denote the C^*-algebra $\mathcal{L}(H, H)$ and the set of positive elements of $\mathcal{L}(H)$, respectively. Let $A \in \mathcal{L}(H)$. By $\mathcal{R}(A)$ and $\mathcal{N}(A)$ we mean the range and the null space of A, respectively. By [3, Lemma 4.1], we know that A is positive if and only if $\langle Ax , x \rangle \geq 0$ for all $x \in H$.

Let H be a Hilbert \mathfrak{A}-module. A closed submodule K of H is said to be orthogonally complemented in H if $H = K \oplus K^\perp$, where

$$K^\perp = \{ x \in H : \langle x , y \rangle = 0 \text{ for all } y \in K \}.$$

Evidently, K is orthogonally complemented in H if and only if there exists a projection P on H, whose range is K and $\mathcal{R}(P) \oplus \mathcal{N}(P) = H$.

Throughout the rest of this section, H and K are Hilbert C^*-modules, and A is an element of $\mathcal{L}(H, K)$. Recall that an operator A is regular if $\mathcal{R}(A)$ is closed in K.

*Received by the editors on August 15, 2017. Accepted for publication on June 13, 2018. Handling Editor: Bryan L. Shader. Corresponding Author: Mohammad Sal Moslehian.
†Department of Mathematics, Farhangian University, Tehran, Iran (eskandarirasoul@yahoo.com).
‡School of Mathematical Sciences, Tongji University, Shanghai 200092, P.R. China (xfang@tongji.edu.cn). This author was supported by the National Natural Science Foundation of China (no. 11371279 and no. 1151130012).
§Department of Pure Mathematics, Center of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad 91775, Iran (moslehian@um.ac.ir). This author was supported by a grant from Ferdowsi University of Mashhad (no. 2/47091).
¶Department of Mathematics, Shanghai Normal University, Shanghai 200234, P.R. China (qxu@shnu.edu.cn). This author was supported by the National Natural Science Foundation of China (no. 11671261).
LEMMA 1.1. (See [3, Theorem 3.2] and [9, Remark 1.1]) The closedness of any one of the following sets implies the closedness of the remaining three sets:

\[\mathcal{R}(A), \mathcal{R}(A^*), \mathcal{R}(AA^*), \text{ and } \mathcal{R}(A^*A). \]

If \(\mathcal{R}(A) \) is closed, then \(\mathcal{R}(A) = \mathcal{R}(AA^*), \mathcal{R}(A^*) = \mathcal{R}(A^*A) \), and the following orthogonal decompositions hold:

\[H = N(A) \oplus \mathcal{R}(A^*), \quad K = \mathcal{R}(A) \oplus N(A^*). \]

Recall that each element \(A^- \) of \(A\{1\} = \{X \in \mathcal{L}(K,H) : AXA = A\} \) is called an *inner inverse* of \(A \). Clearly, it can be deduced from [9, Theorem 2.2] that \(A \) has an inner inverse if and only if \(A \) is regular. In this case, we put

\[L_A := I - A^-A, \]

where \(A^- \in A\{1\} \) is unspecified.

The Moore–Penrose inverse \(A^\dagger \) of \(A \) (if it exists) is the unique element \(X \) of \(\mathcal{L}(K,H) \) which satisfies

\[AXA = A, \quad XAX = X, \quad (AX)^* = AX, \text{ and } (XA)^* =XA. \]

We remark that as in the Hilbert space case, \(A^\dagger \) exists if and only if \(A \) is regular [9, Theorem 2.2], in which case \(\mathcal{R}(A^\dagger) = \mathcal{R}(A^*), N(A^\dagger) = N(A^*), \) and

\[(A^\dagger)^* = (A^*)^\dagger \quad \text{and} \quad (AA^*)^\dagger = (A^*)^\dagger A^\dagger = (A^\dagger)^* A^\dagger. \]

If \(H = K \) and \(A \) is Hermitian, then \(A^\dagger \) is also Hermitian and \(AA^\dagger = A^\dagger A \).

The study of operator equations has been developed from matrices to infinite dimensional spaces; for example, arbitrary Hilbert spaces and Hilbert \(\mathfrak{A} \)-modules, by several mathematicians; see [1, 4, 8, 11, 12] and references therein. In [8], some necessary and sufficient conditions for the existence of common Hermitian and positive solutions \(X \in \mathcal{L}(H) \) for the equations \(AX = C \) and \(XB = D \) are proposed and some formulas for the general forms of their common solutions are given.

In this paper, we give some necessary and sufficient conditions for the operator system \(A_1X = C_1, \quad XA_2 = C_2, \quad A_3XA_3^* = C_3, \text{ and } A_4XA_4^* = C_4 \) to have a common positive solution, where \(A_i \)'s and \(C_i \)'s are adjointable operators on Hilbert \(C^* \)-modules. This corrects the main result of Song and Wang [7] by removing some gaps in its proof. Finally, we give a technical example and show that our investigation in the setting of Hilbert \(C^* \)-modules differs from that in the framework of Hilbert spaces.

2. Main results. Throughout this section, \(H, K, L, \) and \(K_i(1 \leq i \leq 4) \) are Hilbert \(\mathfrak{A} \)-modules.

The proof of Lemma 2.1 below is straightforward.

LEMMA 2.1. Let \(A \in \mathcal{L}(H,K), C \in \mathcal{L}(L,K) \) be such that \(A \) is regular. Then the operator equation \(AX = C \) has a solution \(X \in \mathcal{L}(L,H) \) if and only if \(\mathcal{R}(C) \subseteq \mathcal{R}(A) \). In this case, the general solution to \(AX = C \) is of the form

\[X = A^-C + (I - A^-A)T, \]

where \(T \in \mathcal{L}(L,H) \) is arbitrary.
LEMMA 2.2. (See [8, Theorem 2.1]) Let $A, C \in \mathcal{L}(H, K)$ be such that both A and CA^* are regular. Then the operator equation $AX = C$ has a solution $X \in \mathcal{L}(H)_+$ if and only if $CA^* \geq 0$ and $\mathcal{R}(C) = \mathcal{R}(CA^*)$. In this case, the general positive solution to $AX = C$ is of the form
\[
X = C^*(CA^*)^{-}C + LA SL_A^*,
\]
where $S \in \mathcal{L}(H)_+$ is arbitrary and $C^*(CA^*)^{-}C$ is a positive element, which is independent of the choice of the inner inverse $(CA^*)^{-}$.

LEMMA 2.3. (See [8, Theorem 3.7]) Let $A_1, C_1 \in \mathcal{L}(H, K), A_2, C_2 \in \mathcal{L}(L, H),$
\[
D = \left(\begin{array}{c} A_1 \\ A_2^* \end{array} \right), \quad E = \left(\begin{array}{c} C_1 \\ C_2^* \end{array} \right), \quad \text{and} \quad F = \left(\begin{array}{cc} C_1A_1^* & C_1A_2 \\ (A_1C_2)^* & C_2^*A_2 \end{array} \right)
\]
be such that D and F are regular. Then the system
\[
(2.6) \quad A_1X = C_1, \quad XA_2 = C_2, \quad X \in \mathcal{L}(H)
\]
has a solution $X \in \mathcal{L}(H)_+$ if and only if $F \geq 0$ and $\mathcal{R}(E) \subseteq \mathcal{R}(F)$. In this case, the general positive solution to system (2.6) can be expressed as
\[
X = E^*F^{-}E + LDTL_D^*,
\]
where $T \in \mathcal{L}(H)_+$ is arbitrary and $E^*F^{-}E$ is a positive element, which is independent of the choice of the inner inverse F^{-}.

REMARK 2.4. Suppose that $A \in \mathcal{L}(H, K)$ and $C \in \mathcal{L}(K)$ are both regular. It is indicated in [10, Lemma 3.2] that the equation
\[
(2.7) \quad AXA^* = C, \quad X \in \mathcal{L}(H),
\]
has a solution $X \in \mathcal{L}(H)_+$ if and only if
\[
(2.8) \quad C \geq 0 \quad \text{and} \quad \mathcal{R}(C) \subseteq \mathcal{R}(A).
\]
In this case, the general positive solution for equation (2.7) can be expressed as
\[
(2.9) \quad X = A^1C(A^1)^* + A^1C(A^1)^*VF_A + FA^*A^1C(A^1)^* + FA^*A^1C(A^1)^*VF_A + FAWF_A,
\]
where $F_A = I - A^1A$, $V \in \mathcal{L}(H)$ is arbitrary, and $W \in \mathcal{L}(H)_+$ is arbitrary.

The point is, as shown in [2] by Groß for matrices, we can replace A^1 in (2.9) by a general inner inverse A^-, and meanwhile give a simplified formula for X. For the sake of completeness, we give a detailed proof of Lemma 2.5 below, using a method somewhat different from that in [2].

LEMMA 2.5. (See [2, Theorem 1]) Suppose that $A \in \mathcal{L}(H, K)$ and $C \in \mathcal{L}(K)$ are both regular such that condition (2.8) is satisfied. Then the general positive solution to equation (2.7) can be expressed as
\[
(2.10) \quad X = [A^{-}B + LA Y][A^{-}B + LA Y]^* + LA S(L_A)^*,
\]
where L_A is defined by (1.2), $Y \in \mathcal{L}(K, H)$ is arbitrary, $S \in \mathcal{L}(H)_+$ is arbitrary, and $B \in \mathcal{L}(K)$ is an arbitrary operator satisfying $BB^* = C$.
Proof. Let $B \in \mathcal{L}(K)$ be chosen such that $BB^* = C$. By Lemma 1.1, we have $\mathcal{R}(B) = \mathcal{R}(C)$; hence, $AA^*B = B$, which means that each operator X of the form (2.10) is a positive solution to equation (2.7).

Conversely, suppose that $X \in \mathcal{L}(H)_+$ is a solution to equation (2.7). Let $U = XA^* - A^*C$. Then $AU = 0$; hence, $XA^* = A^*C + L_AU$. Taking the $*$-operation, we have

$$ AX = C(A^*)^* + U^*(L_A)^* \overset{\text{def}}{=} C'. $$

Note that $C'A^* = AXA^* = C$, which is regular. Note also that X is a positive solution to the equation $AZ = C', Z \in \mathcal{L}(H)$; so by Lemma 2.2, there exists $S \in \mathcal{L}(H)_+$ such that

$$ X = (C')^*(C'A)^1C' + LAS(L_A)^* = (C')^*(BB^*)^1C' + LAS(L_A)^*. $$

Clearly, $C(B')^* = BB^*(B')^* = B$, and, by (1.4), we have $(BB^*)^\dagger = (B^\dagger)^\dagger B^\dagger$. In view of the observation above, formula (2.10) for X follows immediately from (2.11) and (2.12) by putting $Y = U(B^\dagger)^*$. □

Lemma 2.6. (See [6, Proposition 1.4.5]) Let x and a be elements in a C^*-algebra \mathfrak{A} such that $a \geq 0$ and $x^*x \leq a$. If $0 < \beta < \frac{1}{2}$, then there exists $u \in \mathfrak{A}$ with $\|u\| \leq \|a^{1/2} - \beta\|$ such that $x = ua^\beta$.

Lemma 2.7. Let $A \in \mathcal{L}(H, K)$ and $B \in \mathcal{L}(K)_+$ be such that $AA^* \leq B$. Then, for each $\beta \in (0, \frac{1}{2})$, there exists $C \in \mathcal{L}(H, K)$ such that $A = B^\beta C$.

Proof. We consider the C^*-algebra $\mathcal{L}(H \oplus K)$, which contains \tilde{A} and \tilde{B}, where

$$ \tilde{A} = \begin{pmatrix} 0 & 0 \\ A & 0 \end{pmatrix}, \quad \tilde{B} = \begin{pmatrix} 0 & 0 \\ 0 & B \end{pmatrix}. $$

It is obvious that $\tilde{A}(\tilde{A})^* \leq \tilde{B}$; so, for each $\beta \in (0, \frac{1}{2})$, by Lemma 2.6, there exists $W = \begin{pmatrix} W_{11} & W_{12} \\ C & W_{22} \end{pmatrix} \in \mathcal{L}(H \oplus K)$ such that $\tilde{A} = B^{\beta} W$. Direct computation yields $A = B^{\beta} C$. □

Now we state the main result of this paper, which is a modification of [7, Theorem 3.5].

Theorem 2.8. Let $A_1, C_1 \in \mathcal{L}(H, K_1), A_2, C_2 \in \mathcal{L}(K_2, H), A_3 \in \mathcal{L}(H, K_3), A_4 \in \mathcal{L}(H, K_4), C_3 \in \mathcal{L}(K_3)$, and $C_4 \in \mathcal{L}(K_4)$ be given such that $A_{11}, M, A_{33}, C_{33}, A_{44}, C_{44},$ and $A_{44}L_{A_{33}}$ are all regular, where

$$ A_{11} = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}, \quad M = \begin{pmatrix} C_1A_1^* \\ C_2A_1^* \\ C_2A_2^* \end{pmatrix}, \quad N = (C_1^* C_2^*)M^\dagger \begin{pmatrix} C_1 \\ C_2 \end{pmatrix}, \quad A_{33} = A_3L_{A_{11}}, \quad A_{44} = A_4L_{A_{11}}, \quad C_{33} = C_3 - A_3NA_3^*, \quad C_{44} = C_4 - A_4NA_4^*. $$

Then the system

$$ A_1X = C_1, \quad XA_2 = C_2, \quad A_3XA_3^* = C_3, \quad A_4XA_4^* = C_4, \quad X \in \mathcal{L}(H) $$

has a solution $X \in \mathcal{L}(H)_+$ if and only if the following three conditions hold:

(i) The operators M, C_{33} and C_{44} are all positive;

(ii) $\mathcal{R} \left(\begin{pmatrix} C_1 \\ C_2 \end{pmatrix} \right) \subseteq \mathcal{R}(M), \mathcal{R}(C_{33}) \subseteq \mathcal{R}(A_{33}), \mathcal{R}(C_{44}) \subseteq \mathcal{R}(A_{44});$

(iii) There exist $S \in \mathcal{L}(H)_+$ and $T \in \mathcal{L}(K_3, K_4)$ such that

$$ C_S := C_{44} - A_{44}L_{A_{33}}SL_{A_{33}}^*A_{44}^\dagger \geq 0, $$

$$ \mathcal{R}(C_S^\dagger T - A_{44}A_{33}^*C_{33}^\dagger) \subseteq \mathcal{R}(A_{44}L_{A_{33}}). $$
If conditions (i)–(iii) are satisfied, then the general positive solution \(X \) to system (2.13) can be expressed as

\[
X = N + L_{A_{11}} \left(A_{33}^{-} C_{33}^{\frac{1}{2}} + L_{A_{33}} Y \right) \left(A_{33}^{-} C_{33}^{\frac{1}{2}} + L_{A_{33}} Y \right)^* (L_{A_{11}})^* + L_{A_{11}} L_{A_{33}} S L_{A_{33}}^* L_{A_{11}}^*,
\]

where \(Y \in \mathcal{L}(K_3, H) \) is defined by

\[
Y = (A_{44} L_{A_{33}})^{-} \left(C_{33}^{\frac{1}{2}} T - A_{44} A_{33}^{-} C_{33}^{\frac{1}{2}} \right) + W - (A_{44} L_{A_{33}})^{-} (A_{44} L_{A_{33}}) W,
\]

in which \(W \in \mathcal{L}(K_3, H) \) is arbitrary.

Proof. The proof is carried out along the same line initiated in [7]. We take two steps: firstly, we consider the necessity and secondly, we consider the sufficiency.

(1) Suppose that \(X_0 \in \mathcal{L}(H)_+ \) is a solution to system (2.13). Then from the first two equations in (2.13), we know that \(X_0 \) is a positive solution to the equation

\[
A_{11} X = \begin{pmatrix} C_1 \\ C_2 \end{pmatrix}, \quad X \in \mathcal{L}(H).
\]

As both \(A_{11} \) and \(M \) are regular, by Lemma 2.3, we conclude that

\[
M \geq 0 \quad \text{and} \quad \mathcal{R} \left(\begin{pmatrix} C_1 \\ C_2 \end{pmatrix} \right) \subseteq \mathcal{R}(M),
\]

and there exists \(V \in \mathcal{L}(H)_+ \) such that

\[
X_0 = \left(\begin{pmatrix} C_1 \\ C_2 \end{pmatrix} \right)^* M^{-} \left(\begin{pmatrix} C_1 \\ C_2 \end{pmatrix} \right) + L_{A_{11}} V L_{A_{11}}^* = N + L_{A_{11}} V L_{A_{11}}^*.
\]

Substituting the expression of \(X_0 \) above into the third equation in (2.13) yields

\[
A_{33} V A_{33}^* = C_{33}.
\]

Therefore, \(V \) is a positive solution to the following equation:

\[
A_{33} X A_{33}^* = C_{33}, \quad X \in \mathcal{L}(H).
\]

As both \(A_{33} \) and \(C_{33} \) are regular, by (2.8), we conclude that

\[
C_{33} \geq 0 \quad \text{and} \quad \mathcal{R}(C_{33}) \subseteq \mathcal{R}(A_{33}),
\]

and by (2.10), there exist \(Y \in \mathcal{L}(K_3, H) \) and \(S \in \mathcal{L}(H)_+ \) such that

\[
V = \left[A_{33} C_{33}^{\frac{1}{2}} + L_{A_{33}} Y \right] \left[A_{33}^{-} C_{33}^{\frac{1}{2}} + L_{A_{33}} Y \right]^* + L_{A_{33}} S L_{A_{33}}^*.
\]

Since \(X_0 \) satisfies the last equation in (2.13), by (2.20), we can get

\[
A_{44} V A_{44}^* = C_{44}.
\]

As both \(A_{44} \) and \(C_{44} \) are regular, once again by (2.8), we have

\[
C_{44} \geq 0 \quad \text{and} \quad \mathcal{R}(C_{44}) \subseteq \mathcal{R}(A_{44}).
\]
We may combine (2.22) and (2.23) to get

\[(2.24) \quad \left[A_{44} \left(A_{33} C_{33}^{\frac{1}{2}} + L A_{33} Y \right) \right] \left[A_{44} \left(A_{33} C_{33}^{\frac{1}{2}} + L A_{33} Y \right) \right]^* = C_S, \]

which means that \(C_S \in \mathcal{L}(K_4)_+ \), and by Lemma 2.7, there exists \(T \in \mathcal{L}(K_3, K_4) \) such that

\[(2.25) \quad A_{44} \left(A_{33} C_{33}^{\frac{1}{2}} + L A_{33} Y \right) = C_{33}^{\frac{1}{2}} T. \]

Therefore, \(Y \) is a solution to the following equation

\[(2.26) \quad A_{44} L A_{33} X = C_{33}^{\frac{1}{2}} T - A_{44} A_{33} C_{33}^{\frac{1}{2}}, \quad X \in \mathcal{L}(K_3, H). \]

Since \(A_{44} L A_{33} \) is regular, by Lemma 2.1, there exists \(W \in \mathcal{L}(K_3, H) \) such that \(Y \) is given by (2.17). We may combine (2.20) with (2.22) to conclude that \(X_0 \) can be expressed as (2.16). This completes the proof of the necessity.

(2) Suppose that conditions (i)–(iii) are all satisfied. Let \(X \) be given by (2.16) with \(Y \) be formulated by (2.17). Then \(X \) is positive since its first term \(N \) in summation is positive by Lemma 2.3, and its other two terms are also positive. By (2.15), \(Y \) is a solution to (2.26); or equivalently, equation (2.25) is satisfied; hence, by the second equation in (2.14), we know that (2.24) is also valid.

Now, let \(V \) be defined by (2.22). Then (2.23) follows immediately from (2.22), (2.24), and (2.14). Since \(\mathcal{R}(C_{33}^{\frac{1}{2}}) = \mathcal{R}(C_{33}) \subseteq \mathcal{R}(A_{33}) \), equation (2.21) can be derived from (2.22). Furthermore, by (2.16) and (2.22), we can conclude that

\[(2.27) \quad X = N + L_{A_{33}} V L_{A_{33}}^*. \]

The equation above, together with (2.21) and (2.23), yields the last two equations in (2.13). In view of (2.19), we have

\[A_{11} N = M^* M^{-} \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} = M M^{-} \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} C_1 \\ C_2 \end{pmatrix}, \]

and thus, \(X \) formulated by (2.27) is a solution to (2.18); that is, the first two equations in (2.13) are also true. This completes the proof of the sufficiency.

Remark 2.9. Due to Lemma 2.7, we choose the number \(\frac{1}{2} \) as the power of \(C_S \) in (2.25). Evidently, in the Hilbert space case this number can be changed more naturally to be \(\frac{1}{2} \), since each closed subspace of a Hilbert space is orthogonally complemented. In fact, based on the equation (2.24) a partial isometry \(T \) can be constructed which satisfies

\[A_{44} \left(A_{33} C_{33}^{\frac{1}{2}} + L A_{33} Y \right) = C_{33}^{\frac{1}{2}} T \]

such that the equation of \(C_{33}^{\frac{1}{2}} T T^* C_{33}^{\frac{1}{2}} = C_S \) is satisfied automatically. It is remarkable that the same is not always true for general Hilbert \(C^* \)-modules. We construct a counterexample as follows.

Example 2.10. Let \(\Omega = \{ z \in \mathbb{C} : |z - 1| \leq 1 \} \) and \(\mathfrak{A} = C(\Omega) \) be the \(C^* \)-algebra consisting of all complex-valued continuous functions on \(\Omega \). With the inner product defined by \((f, g) = f^* g \), for \(f, g \in \mathfrak{A} \), the
Positive Solutions of a System of Operator Equations in Hilbert C^*-Modules

C^*-algebra \mathfrak{A} itself is also a Hilbert \mathfrak{A}-module. Define adjointable operators $A, B, C \in \mathcal{L}(\mathfrak{A})$ by

$$(Af)(z) = \begin{cases} |ze^{i4\arg z}f(z)|, & z \neq 0, \\ 0, & z = 0, \end{cases}$$

$$(Cf)(z) = \begin{cases} |ze^{i\arg z}f(z)|, & z \neq 0, \\ 0, & z = 0, \end{cases}$$

$$(Bf)(z) = |z|^2 f(z),$$

where $\arg z \in (-\frac{\pi}{2}, \frac{\pi}{2})$ for $z \neq 0$ is the argument function and $\arg(0, 0) = 0$, which is discontinuous only at the origin $(0, 0)$. Then $B = B^*$ and

$$(A^*f)(z) = \begin{cases} |ze^{-i4\arg z}f(z)|, & z \neq 0, \\ 0, & z = 0, \end{cases}$$

$$(C^*f)(z) = \begin{cases} |ze^{-i\arg z}f(z)|, & z \neq 0, \\ 0, & z = 0. \end{cases}$$

It follows that $AA^* = A^*A = C^*C = CC^* = B$. We show that there does not exist an $X \in \mathcal{L}(\mathfrak{A})$ such that $AX = C$. Indeed, if such an X exists, then, for each $z \neq 0$ and $f \in \mathfrak{A}$ with $f(0) \neq 0$, we have

$$|z|e^{i4\arg z}f(z) = (Cf)(z) = (Af)(z) = |z|e^{i4\arg z}(Xf)(z).$$

Hence, if $z \neq 0$, then

$$(2.28) \quad (Xf)(z) = e^{i3\arg z}f(z) \quad \text{for each } f \in \mathfrak{A} \text{ with } f(0) \neq 0.$$

Let f satisfy the condition in (2.28). If $z \in \Omega$ and $z = re^{i\arg z} \to 0$ with $\arg z \to (\frac{\pi}{2})^-$, then $(Xf)(z) \to e^{i\frac{3\pi}{2}}f(0)$. On the other hand, $(Xf)(z) \to e^{-i\frac{3\pi}{2}}f(0)$ when $z \in \Omega$ and $z = re^{i\arg z} \to 0$ with $\arg z \to (-\frac{\pi}{2})^+$. Hence, $\lim_{z \to 0}(Xf)(z)$ does not exist; this shows that $Xf \notin \mathfrak{A}$.

Remark 2.11. The counterexample above shows that Lemma 3.4 stated in [7] is incorrect, which leads to the wrong expression of Y given in (3.5) of [7] and the nonsufficiency of the conditions stated in [7, Theorem 3.5].

References

