NORM INEQUALITIES RELATED TO CLARKSON INEQUALITIES∗

FADI ALRIMAWI†, OMAR HIRZALLAH‡, AND FUAD KITTANEH§

Abstract. Let A and B be $n \times n$ matrices. It is shown that if $p = 2$, $4 \leq p < \infty$, or $2 < p < 4$, and both $A + B$, $A - B$ are positive semidefinite, then

$$\|A + B\|_p^p + \|A - B\|_p^p \leq 2^{p-1} \left(\|A\|_p^p + \|B\|_p^p\right) - \left(2^{p/2} - 2\right) \left(\|A\|_p - \|B\|_p\right)_p^p,$$

and if $p = 2$, $4 \leq p < \infty$, or $2 < p < 4$, and both A, B are positive semidefinite, then

$$\|A + B\|_p^p + \|A - B\|_p^p \geq 2 \left(\|A\|_p^p + \|B\|_p^p\right) + \left(2^{1-p/2} - 2^{2-p}\right) \left(\|A + B\|_p - \|A - B\|_p\right)_p^p.$$

These inequalities are reversed if $p = 2$, $1 \leq p < \frac{4}{3}$, or $\frac{4}{3} < p < 2$, and both $A + B$, $A - B$ are positive semidefinite, and if $p = 2$, $1 \leq p \leq \frac{4}{3}$, or $\frac{4}{3} < p < 2$, and both A, B are positive semidefinite, respectively. Commutative (or L_p) versions of these inequalities are also considered.

Key words. Clarkson inequalities, Hanner’s inequality, Schatten p-norm, L_p function, Singular value.

AMS subject classifications. 15A45, 15A60, 47A30, 47B10, 46E30.

∗Received by the editors on October 14, 2017. Accepted for publication on March 14, 2018. Handling Editor: Zejun Huang.
Corresponding Author: Fuad Kittaneh.
†Department of Mathematics, The University of Jordan, Amman, Jordan (fadi.rema@gmail.com).
‡Department of Mathematics, The Hashemite University, Zarqa, Jordan (o.hirzal@hu.edu.jo).
§Department of Mathematics, The University of Jordan, Amman, Jordan (fkitt@ju.edu.jo).