INERTIA SETS ALLOWED BY MATRIX PATTERNS

A.H. BERLINER†, D.D. OLESKY‡, AND P. VAN DEN DRIESSCHE§

Abstract. Motivated by the possible onset of instability in dynamical systems associated with a zero eigenvalue, sets of inertias S_n and S^*_n for sign and zero-nonzero patterns, respectively, are introduced. For an $n \times n$ sign pattern A that allows inertia $(0, n - 1, 1)$, a sufficient condition is given for A and every superpattern of A to allow S_n, and a family of such irreducible sign patterns for all $n \geq 3$ is specified. All zero-nonzero patterns (up to equivalence) that allow S^*_3 and S^*_4 are determined, and are described by their associated digraphs.

Key words. Sign pattern, Zero-nonzero pattern, Inertia, Digraph.

AMS subject classifications. 15B35, 05C20, 15A18, 15C50.

*Received by the editors on October 24, 2017. Accepted for publication on May 22, 2018. Handling Editor: Leslie Hogben.
Corresponding Author: Adam H. Berliner.
†Department of Mathematics, Statistics, and Computer Science, St. Olaf College, Northfield, MN, 55057, USA (berliner@stolaf.edu).
‡Department of Computer Science, University of Victoria, Victoria, BC, V8W 2Y2, Canada (dolesky@cs.uvic.ca).
§Department of Mathematics and Statistics, University of Victoria, Victoria, BC, V8W 2Y2, Canada (pvdd@math.uvic.ca).