STRUCTURED EIGENVALUE/EIGENVECTOR BACKWARD ERRORS OF MATRIX PENCILS ARISING IN OPTIMAL CONTROL

CHRISTIAN MEHL†, VOLKER MEHRMANN†, AND PUNIT SHARMA‡

Abstract. Eigenvalue and eigenpair backward errors are computed for matrix pencils arising in optimal control. In particular, formulas for backward errors are developed that are obtained under block-structure-preserving and symmetry-structure-preserving perturbations. It is shown that these eigenvalue and eigenpair backward errors are sometimes significantly larger than the corresponding backward errors that are obtained under perturbations that ignore the special structure of the pencil.

Key words. Eigenvalue backward error, Eigenvector backward error, Structured matrix pencil, Dissipative Hamiltonian system, H_∞ control, Linear quadratic optimal control.

AMS subject classifications. 93D20, 93D09, 65F15, 15A21, 15A22.

†Institut für Mathematik, MA 4-5 TU Berlin, Str. d. 17. Juni 136, D-10623 Berlin, Germany (mehl@math.tu-berlin.de, mehrmann@math.tu-berlin.de). C. Mehl and V. Mehrmann gratefully acknowledge support from Einstein Center ECMath via project SE3: Stability analysis of power networks and power network models. V. Mehrmann also acknowledges support Deutsche Forschungsgemeinschaft through CRC 910 Control of Self-Organizing Nonlinear Systems via project A02: Analysis and computation of stability exponents for delay differential-algebraic equations.

‡Department of Mathematics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India (punit.sharma@maths.iitd.ac.in).