Abstract. For a proper cone K in a finite dimensional real Hilbert space V, a linear map L is said to be K-semipositive if there exists $d \in K^\circ$, the interior of K, such that $L(d) \in K^\circ$. The aim of this manuscript is to characterize K-semipositivity of linear maps relative to a proper cone. Among several results obtained, K-semipositivity is characterized in terms of products of the form YX^{-1} for K-positive linear maps ($L(K \setminus \{0\}) \subseteq K^\circ$) with X invertible, semipositivity of matrices relative to the n-dimensional Lorentz cone L_n^+ is characterized, semipositivity of the following three linear maps relative to the cone S_n^+: $X \mapsto AXB$ (denoted by $M_{A,B}$), $X \mapsto AXB + B^tXA^t$ (denoted by $L_{A,B}$), where $A, B \in M_n(\mathbb{R})$, and $X \mapsto X - AXA^t$ (denoted by S_A, known as the Stein transformation) is characterized. It is also proved that $M_{A,B}$ is semipositive if and only if $B = \alpha A^t$ for some $\alpha > 0$, the map $L_{A,B}$ is semipositive if and only if $A(B^t)^{-1}$ is positive stable. A particular case of the new result generalizes Lyapunov’s theorem. Decompositions of the above maps (when they are semipositive) in the form $L_1L_2^{-1}$, where L_1 and L_2 are both positive and invertible (assuming A is invertible in the case of S_A) are presented. Moreover, a question on invariance of the semipositive cone K_A of a matrix under A is partially answered.

Key words. Positivity and semipositivity of linear maps, Proper cones, Positive definite matrices, Positive stable matrices, Semidefinite linear complementarity problems, Lyapunov and Stein transformations, Semipositive cone.

AMS subject classifications. 15B48, 90C33.