DIAGONAL SUMS OF DOUBLY SUBSTOCHASTIC MATRICES

LEI CAO†, ZHI CHEN‡, XUEFENG DUAN§, SELCUK KOYUNCU¶, AND HUILAN LI∥

Abstract. Let \(\Omega_n \) denote the convex polytope of all \(n \times n \) doubly stochastic matrices, and \(\omega_n \) denote the convex polytope of all \(n \times n \) doubly substochastic matrices. For a matrix \(A \in \omega_n \), define the sub-defect of \(A \) to be the smallest integer \(k \) such that there exists an \((n + k) \times (n + k) \) doubly stochastic matrix containing \(A \) as a submatrix. Let \(\omega_{n,k} \) denote the subset of \(\omega_n \) which contains all doubly substochastic matrices with sub-defect \(k \). For \(\pi \) a permutation of symmetric group of degree \(n \), the sequence of elements \(a_{1\pi(1)}, a_{2\pi(2)}, \ldots, a_{n\pi(n)} \) is called the diagonal of \(A \) corresponding to \(\pi \). Let \(h(A) \) and \(l(A) \) denote the maximum and minimum diagonal sums of \(A \in \omega_{n,k} \), respectively. In this paper, existing results of \(h \) and \(l \) functions are extended from \(\Omega_n \) to \(\omega_{n,k} \). In addition, an analogue of Sylvesters law of the \(h \) function on \(\omega_{n,k} \) is proved.

Key words. Doubly substochastic matrices, Sub-defect, Maximum diagonal sum.

AMS subject classifications. 15A51, 15A83.