ON THE MAXIMAL NUMERICAL RANGE OF SOME MATRICES∗

ALI N. HAMED† AND ILYA M. SPITKOVSKY‡

Abstract. The maximal numerical range $W_0(A)$ of a matrix A is the (regular) numerical range $W(B)$ of its compression B onto the eigenspace \mathcal{L} of A^*A corresponding to its maximal eigenvalue. So, always $W_0(A) \subseteq W(A)$. Conditions under which $W_0(A)$ has a non-empty intersection with the boundary of $W(A)$ are established, in particular, when $W_0(A) = W(A)$. The set $W_0(A)$ is also described explicitly for matrices unitarily similar to direct sums of 2-by-2 blocks, and some insight into the behavior of $W_0(A)$ is provided when \mathcal{L} has codimension one.

Key words. Numerical range, Maximal numerical range, Normaloid matrices.

AMS subject classifications. 15A60, 15A57.

∗Received by the editors on April 2, 2018. Accepted for publication on May 17, 2018. Handling Editor: Tin-Yau Tam. Corresponding Author: Ilya M. Spitkovsky.

†Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), Saadiyat Island, P.O. Box 129188, Abu Dhabi, United Arab Emirates (anh334@nyu.edu). The results are partially based on the Capstone project of the first named author under the supervision of the second named author.

‡Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), Saadiyat Island, P.O. Box 129188, Abu Dhabi, United Arab Emirates (ims2@nyu.edu, imspitkovsky@gmail.com). Supported in part by Faculty Research funding from the Division of Science and Mathematics, New York University Abu Dhabi.