CONSISTENCY OF QUATERNION MATRIX EQUATIONS

\[AX^* - XB = C \] AND \[X - AX^*B = C^* \]

XIN LIU†, QING-WEN WANG‡, AND YANG ZHANG§

Abstract. For a given ordered units triple \(\{q_1, q_2, q_3\} \), the solutions to the quaternion matrix equations \(AX^* - XB = C \) and \(X - AX^*B = C^* \), where \(X^* \) is the conjugate transpose of \(X \), \(X^\eta = -\eta X \eta \) and \(X^{\eta^*} = -\eta X^* \eta \), \(\eta \in \{q_1, q_2, q_3\} \), are discussed. Some new real representations of quaternion matrices are used, which enable one to convert \(\eta \)-conjugate (transpose) matrix equations into some real matrix equations. By using this idea, conditions for the existence and uniqueness of solutions to the above quaternion matrix equations are derived. Also, methods to construct the solutions from some related real matrix equations are presented.

Key words. Quaternion matrix equations, Real representations, \(\eta \)-conjugates, \(\eta \)-conjugate transposes, Ordered units triple.

AMS subject classifications. 15A24, 15A33, 15B57.

Received by the editors on December 17, 2018. Accepted for publication on August 5, 2019. Handling Editor: Froilan Dopico. Corresponding Author: Xin Liu.

†Faculty of Information Technology, Macao University of Science and Technology, Avenida Wai Long, TaiPa, Macao, 999078, P.R. China (xiliu@must.edu.mo).

‡Department of Mathematics, Shanghai University, Shanghai 200444, P.R. China.

§Department of Mathematics, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.