Benefits and Methods of Integrating Geospatial Technology in both Educational and Professional Realms of STEM Education

David Goff

University of Wyoming, ahouseal@uwyo.edu

Follow this and additional works at: https://repository.uwyo.edu/plan_b

Part of the Education Commons

Recommended Citation

https://repository.uwyo.edu/plan_b/7

This is brought to you for free and open access by the Student Scholarship at Wyoming Scholars Repository. It has been accepted for inclusion in Doctoral Projects, Masters Plan B, and Related Works by an authorized administrator of Wyoming Scholars Repository. For more information, please contact scholcom@uwyo.edu.
Benefits and Methods of Integrating Geospatial Technology in both Educational and Professional Realms of STEM Education

David Goff

A Plan B paper submitted in partial fulfilment of the requirements for the degree of Master of Science in Natural Science from the Science and Mathematics Teaching Center

University of Wyoming, Laramie Wyoming
Spring 2015

Committee Members:
Nick Jones, Senior Research Scientist, Chair
Alan Buss, Associate Professor
Scott Chamberlin, Associate Professor
Dr. Joy Banres-Johnson
Contents

Abstract ... 3

Introduction and Background Statement ... 4

Positionality Statement .. 4

Literature Review and Theoretical Framework .. 6

Table 1 Structure of Knowledge based on Blooms' 1956 Taxonomy ... 6

Technology in the classroom .. 7

Standards for teaching and learning science ... 8

Table 2 Percent Public School Teachers Using Computers for Classroom Assignments (1999) from National Center for Education Statistics ... 10

Critical juncture: Place-based education & Citizen Science ... 10

Description of Plan B Product (Teaching and Learning Website) ... 11

Rationale ... 11

Organization of site .. 11

Lesson Plan / Resource for Students .. 14

Student Worksheet ... 15

Reference List .. 17

Appendix A: Literature comparison notes .. A-1

Appendix B: Plan B Project Defense Slideshow .. B-1
Abstract

In the ever-present search for betterment, technology offers many benefits that have never been seen before, namely accessibility and engagement. Technology is accessible to almost anyone, anywhere in the world. The proper use of technology can capture the interest of the student and ensure engagement. This can be accomplished without regard to location, time-zone, political standing, even language barriers are becoming less impenetrable. With the rise of mobile device usage, a person can access information from the middle of a farmer’s field, to the middle of an elementary classroom and everywhere in-between. This project examines how global positioning technology systems including standard GPS and Google mapping technologies can be used to enhance understanding of the physical and natural world. The present work is based on several current educational theories including Place-based education, Citizen Science, and 21st Century Science Skills. Close scrutiny of current policy and research documents around STEM (science, technology, engineering and mathematics) teaching and learning standards inform this project. A website was developed to collate and share geospatial technology resources for teachers and learners in academic (middle school appropriate) and professional settings. The site: http://eldergoff.wix.com/gps-gps is a repository of links to teaching helps and informational pages on education in science, notably geospatial technology for classroom and practical use. A full literature review is available on the website which also includes many interactive tools.
Introduction and Background Statement

“Three major technology revolutions [broadband connections, social media and mobile connectivity] have occurred during the period the Pew Research Center has been studying digital technology—15 years—and yet more are on the horizon” (Pew Research Center, 2014).

This work comes at a time when the world is undergoing major change. “Three technology revolutions” have changed the way the world processes information for daily understanding. As technology continues to usher in dramatic changes in computing, relating and processing of information, teachers and consumers of this information must also change the way they access and use it. The present work is designed to contribute resources to everyday users of information and technology obtained from and for simply exploring the natural world. A theoretical framework based on place-based education, 21st century skills and citizen science has been used to shape a website—the major tool/medium presently used to collect information—that contains resources for users.

Positional Statement

I am a trained and certified Physics and Mathematics teacher. I have eight years teaching experience in middle school, high school, and university. I am no longer a classroom teacher. I am in government service, leading and training some of our nation’s most promising young men and women. This unique situation allows me two vastly different perspectives to draw from—my educator role and my professional role.

As an educator, my main focus was on bringing students to understand how to look at a problem productively, draw on prior knowledge to understand the problem, and how to effectively implement learned methods to solve the contrived problem. Bloom’s Taxonomy labels these levels as Knowledge and Comprehension. According to Krathwohl (2002) Bloom’s original 1950s era taxonomy was much more complex and useful for determining congruence with larger ideals of learning than is currently being projected. Knowledge itself was described as specific, universal, based on abstract ideas
and very concrete conventions and goals. Comprehension could be measured through translation, interpretation or extrapolation. Unfortunately, learning goals and objectives in today’s landscape of thinking about school and schooling are not that detailed. Somehow, knowledge and comprehension are discounted when perhaps this sterile environment allows students to experiment with their learnings and try their ideas in a setting with little to no risk. Many educators ignore these foundations in pursuit of higher-order thinking (application, analysis, synthesis and evaluation) outcomes. Building knowledge and comprehension in the ways that Bloom (and his contemporaries) originally intended are appropriate and worth revisiting.

As a professional outside the classroom, my main focus is to capitalize on the learning that my comrades gained in the classroom and bring them to higher levels of understanding. This includes applying their knowledge in new and creative ways, analyzing and understanding why what they did either succeeded or failed, synthesizing their efforts and knowledge with other teams and continually evaluating their methods to identify areas of potential improvement. This project is directed to the effective teaching of and beneficial use of the Global Positioning System (GPS). I have created a website with information for both educators and learners to better understand not only what GPS is, but where it comes from, how to teach it, and how to use it in varying situations.

As you read this paper you will begin to identify ways your classroom and your life can benefit from this area of technology. You will be introduced to several paradigm-shifting ideas regarding the use of technology in and out of the classroom. In the next section, I will review scholarship related to my theoretical framework, and open your view to the leading researchers on this topic.
Literature Review and Theoretical Framework

I have enjoyed extensive research into the world of Global Positioning Systems, Education, and how the two can be harnessed for the benefit of all. I learned a lot about GPS and how it works, and even more about how to share that knowledge with others. The big questions are why is this knowledge important and why should someone care about it? The simple answer is that knowledge is power, and having that power in your hand via a GPS unit can be the difference between success and failure, even life and death. A brief overview of Bloom’s deconstructed views about knowledge is important. Table 1. (adapted from Krathwohl, 2002, p. 213) provides a description of knowledge based on Bloom’s 1956 taxonomy.

Table 1 Structure of Knowledge based on Blooms' 1956 Taxonomy

<table>
<thead>
<tr>
<th>Knowledge of specifics</th>
<th>Knowledge of ways and means of dealing with specifics</th>
<th>Knowledge of universals and abstractions in a field</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Terminology</td>
<td>• Conventions</td>
<td>• Principles and generalizations</td>
</tr>
<tr>
<td>• Specific facts</td>
<td>• Trends and sequences</td>
<td>• Theories and structures</td>
</tr>
<tr>
<td></td>
<td>• Classifications and categories</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Criteria</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Methodologies</td>
<td></td>
</tr>
</tbody>
</table>

A study of pre-service teachers in Turkey noted the benefits of using a revised version of Bloom’s Taxonomy in their lesson planning (Bümen, 2007). Knowledge of ways and means of dealing with specific information has particular relevance to 21st century learning around the globe. Successful learning in today’s world depends on one’s ability to choose from a wide array of tools, methods and information quickly. In the years since it was first introduced as a tool to outline learning objectives, knowledge has been further deconstructed to distinguish factual, conceptual, procedural and metacognitive components for cognitive processes. Specific tasks associated with each type of knowledge help learners identify for themselves which aspects of a new field they understand. “Based on examination of knowledge and cognition, teachers can decide where and how to improve the
planning of curriculum and the delivery of instruction” (Krathwohl, 2002, p. 218). For this reason, I posit that knowledge is an acceptable starting point for work with teachers and professionals around geospatial technologies. Furthermore a website of resources that can be used to build knowledge for teachers and students in both academic and professional contexts makes sense for practical use of theory and tools.

Technology in the Classroom

Many studies have been accomplished showing strong correlation between training teachers to effectively use technology for the purpose of increasing student engagement and performance in science. In the ever-present search for betterment, technology offers many benefits that have never been seen before, namely accessibility and engagement. Technology is accessible to almost anyone, anywhere in the world. The proper use of technology can capture the interest of the student and ensure engagement. This can be accomplished without regard to location, time-zone, political standing, even language barriers are becoming less impenetrable. With the rise of mobile device usage, a person can access information from the middle of a farmer’s field, to the middle of an elementary classroom and everywhere in-between (Patterson, 2007; Pew Research Center, 2014).

Harnessing this global audience and feeding mankind’s desire for knowledge, a resource website was created that can guide both educators and learners to a more beneficial experience with GPS. As I studied science standards and teaching trends, I realized that there is much to be done to improve student engagement in the classroom. One way to enhance this is to educate the educators so they are not timid in sharing information and techniques about the proper and beneficial use of technology in everyday use (McClurg & Buss, 2007). A teacher that does not have the knowledge about the subject cannot teach with power. In order to equip the learner with a thirst for learning, this education must take place at the earliest levels. Based on their sample of students in grades 5 through grade 12, not only did students have an increased desire to improve, but they learned more effectively and more
completely. In this instance, as well as in my own experience as a teacher, it has been shown that comprehension, retention and engagement were markedly improved when technology was not only available but encouraged and taught.

Standards for Teaching and Learning Science

Recognizing the ever-evolving world of education and the necessary inter-twined nature of it with technology, there have been several movements to reform the standards governing teaching in general but also science teaching more directly. Beginning with the National Academies Press’ Framework for K-12 Science Education (Framework), moving to the Next Generation Science Standards (NGSS) and the International Society for Technology in Education’s Standards for Students (ISTE-S) and Teachers (ISTE-T), the reform has been universal in voice – technology is here to stay and must be properly managed to promote learning and success (Stage, 2013).

The Framework is based on three key areas called dimensions. First there are core ideas, or ideas and information for each specific content area. Then there are Science and Engineering practices, encouraging and enabling more than just learning content but expecting students to understand the methods of scientists and engineers. Finally there are cross-cutting concepts or ideas that are found in more than one of the topics (Keller, 2012). The NGSS, based on the Framework, breaks out the ideas introduced in the Framework and formally forms standards for science education (Krajcik, 2012). ISTE-T focuses on integrating the available technology into the learning environment with standards being Student Learning and Creativity, Digital Age Learning Experiences and Assessments, Digital Age Work and Learning, Digital Citizenship and Responsibility, and Professional Growth and Leadership. The Student version describes the skills and knowledge they need to learn effectively and live productively in an increasingly global and digital society (Crompton, 2014).

To facilitate students’ learning of concepts and content identified in the standards, teachers all over the world find themselves striving to integrate technology into their classrooms (Gatrell, 2004).
Focusing on the use of Geographic Information Systems (GISystems or GIS) in and out of school can extend borders to encompass the entire planet. GoogleMaps is a tool that can be used both at home and at school with similar benefit. A well-prepared teacher can encourage and demonstrate the many facets of and tools found within GoogleMaps, leading students to find interest in the world around them. Custom maps can be prepared and shared with the class, and everyone can contribute. These maps are constantly being updated with new information collected by satellite, city planners, and even end-users. The utilization of these tools requires an internet connection, which can be a limiting factor in some places. Being such an accessible medium requires a heightened level of wariness, because much of the information provided is not necessarily verified or filtered (Patterson, 2007). Nevertheless, if a major goal of teaching and learning is to engage students more often and to enable broader participation as citizens of science, it makes sense that the level of caution that might otherwise be exercised in the classroom could be reasonably diminutive.

Taking education out of traditional classrooms and into a dynamic, applicable setting is being accomplished all over the world with measured increase in engagement, comprehension, and retention. Based on data from 1999, the percent of public school teachers in the United States who reported using computers in the classroom is high when there are multiple computers in the classroom. While it is beyond the scope of the present project to more closely scrutinize these data, it is highly likely that there is a positive trend in computer use in the classroom for the purpose of engagement given the ubiquity of technology tools available, including mobile connectivity (Pew Research Center, 2014).
Table 2 Percent Public School Teachers Using Computers for Classroom Assignments (1999) from National Center for Education Statistics

<table>
<thead>
<tr>
<th>Activities</th>
<th>Number of computers available in the classroom</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>One</td>
</tr>
<tr>
<td>All public school teachers</td>
<td>43</td>
</tr>
<tr>
<td>Solve problems/analyze data</td>
<td></td>
</tr>
<tr>
<td>Not at all</td>
<td>59</td>
</tr>
<tr>
<td>Small extent</td>
<td>20</td>
</tr>
<tr>
<td>Moderate extent</td>
<td>16</td>
</tr>
<tr>
<td>Large extent</td>
<td>5</td>
</tr>
<tr>
<td>Word processing/spreadsheets</td>
<td></td>
</tr>
<tr>
<td>Not at all</td>
<td>45</td>
</tr>
<tr>
<td>Small extent</td>
<td>19</td>
</tr>
<tr>
<td>Moderate extent</td>
<td>21</td>
</tr>
<tr>
<td>Large extent</td>
<td>15</td>
</tr>
<tr>
<td>Drills/practice</td>
<td></td>
</tr>
<tr>
<td>Not at all</td>
<td>61</td>
</tr>
<tr>
<td>Small extent</td>
<td>21</td>
</tr>
<tr>
<td>Moderate extent</td>
<td>14</td>
</tr>
<tr>
<td>Large extent</td>
<td>4</td>
</tr>
</tbody>
</table>

Critical juncture: Place-based education & Citizen Science

Place-Based Education is used when speaking of learning ideas that are personally relevant to the student in a setting that is native to the content being taught. Teaching GPS by lecturing is far less effective than teaching GPS by allowing students to use the technology to solve real-life problems in real-life situations. Joining in large projects that extend far beyond the reach of the school, school district, or even country is the idea of Informal or Citizen Science. There are thousands of research projects available for people of any age, education level, and interest to take part in. Engaging citizens allows scientists to have a much further reach in their research and makes it possible for regular people to participate in the act and discovery of science. Conducting research either for yourself or in conjunction with a larger project requires knowledge of modern technology and methods. Twenty-first Century Science Skills encompass what is necessary for a student to become able, contributing members
of the science community. These are: Information Literacy, Collaboration, Communication, Creativity and Innovation, Problem Solving, and Responsible Citizenship.

Given all of the standards and skills available for teachers and learners, there is no reason that the up-and-coming generation of scientists will not be ready for the challenges they will face. As long as the pursuit of knowledge remains the focus of all instruction and guides every lesson, we will be enabling the future to be a bright, wonderful place.

Description of Plan B Product (Teaching and Learning Website)

http://eldergoff.wix.com/gps-gps

Rationale

To provide a useful and information-packed tool for educators and learners, I felt I needed a medium that was accessible to anyone, anytime, from anywhere – including mobile devices. With this in mind, I created a website entitled “Goff’s Practical Solutions – Global Positioning Systems” found at http://eldergoff.wix.com/gps-gps. Having designed several websites both for my classroom and businesses of friends and family, I looked for a website host that would meet my design needs and be cost effective. I decided to use Wix.com as my host because of the many integrated user improvements they provide and the fact that their services are free. These include easy to instigate mobile-friendly layouts, drop-down menus, flash-loaded picture galleries, integrated linking to social media, and a variety of applications to make the building of and final look of the site more appealing.

Organization of Site

The site begins with a simple Home page stating the purpose of the website as “Making GPS easy and effective for teachers and learners alike,” with the description “A compilation of GPS related websites, research, and information to help teachers teach GPS, and learners understand why GPS is so integrated in our world and how they can harness it for their benefit.” Immediately one understands
the two visions of the website: To provide resources to better enable teachers to present GPS, and to provide interesting learning activities enabling learners to gain a useful understanding of GPS. The menu at the top is equally simple with links entitled: ‘Home’, ‘For Educators’, ‘For Learners’ and ‘More Info’.

Following the ‘For Educators’ link you are led to the Educator Resources page, with links to Educational Research, information about GPS, and all about Google Maps. Under the ‘Educational Resources’ page you are presented with a brief introduction to Place-Based Education, Informal/Citizen Science, and 21st Century Science Skills. Each of these sections includes a brief description of the educational practices, and a short list of key websites. The ‘All About GPS’ link leads you to a trove of information classified into groups entitled What is GPS, How to Teach GPS, and GPS Teaching Tools. Finally, the ‘Google Maps’ page includes all you ever wanted to know about Google Maps and more – with links. I chose to make Google Maps a main focus of the site because of the many different ways that Google Maps can share information with you. There are several types of base maps available such as Political, Satellite, and Picture maps. There are also many different layers of information you can add to each map, including terrain, current and trending traffic, transit routes with current locations of busses and trains as well as daily schedules, bicycling and hiking trails shown, and of course boundaries of neighborhoods, cities, states, forests, countries and more.

Diving into the ‘For Learners’ links you find an ‘All About GPS’ link as well, along with the ‘Google Maps’ page, but you also find a page with activities to help one learn and enjoy using GPS. This page offers links to GeoCaching sites, articles on engaging games to play using your GPS, interesting ideas to do on a date involving GPS, and more.

In the ‘More Info’ section you will find a list of the websites that I referenced in building the website as well as links to education standards. The ‘References’ page is categorized into six sections: Place-Based Education, Citizen Science, 21st Century Science Skills, GPS Information, GPS Teaching, and
Using GPS. I researched not only websites but publications and articles, including a video lecture, all of which are linked to here. On the ‘Standards’ page I share links to the Next Generation Science Standards, National Academies Press’ Framework for K-12 Science Education, and International Society for Technology in Education’s Standards for Students and Teachers. I offer some personal information on the ‘About Me’ page along with a link to my in-progress web-site featuring my travels in Turkey. There is a ‘Contact’ page where you can send an email message to me, and finally there is a ‘Terms of Use’ page releasing me from copyright liability of any information found on my site or any of the sites that are linked on my page.

This project is accessible to anyone with an internet connection, either on a computer, phone, tablet, or Smart TV. The information that I share can help teachers and learners better understand the full capabilities of GPS and be able to apply it in new areas, analyze the benefits of their GPS usage, synthesize their new-found skills with others to better the education community as a whole, and evaluate how GPS is enhancing their work.

The website will be updated as new resources are identified and methods recognized. Appendix B is the slideshow that was presented during the Plan B Project Defense. At the end, there is a copy of much of the website as it was on 23 April, 2015.
Lesson Plan / Resource for Students

Below is a copy of a lesson plan stemming from many ideas presented in the paper.

<table>
<thead>
<tr>
<th>Course Title</th>
<th>7th Grade Physical Science</th>
<th>Lesson Date</th>
<th>05/01/2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit</td>
<td>Measurement</td>
<td>Specific Topic</td>
<td>Linear measurement</td>
</tr>
<tr>
<td>NGSS Objective</td>
<td>MS-ETS1-2,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily Objective(s)</td>
<td></td>
<td></td>
<td>Rationale</td>
</tr>
<tr>
<td>1. Using a GPS, verify estimated distances</td>
<td>1. (Compare</td>
<td>2. Tactile</td>
<td></td>
</tr>
<tr>
<td>2. Place coordinates on an online map</td>
<td></td>
<td>3. Measure</td>
<td></td>
</tr>
<tr>
<td>3. Measure distances on an interactive map</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lesson Content – Pages in book</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructional Procedures</td>
<td></td>
<td>Minutes</td>
<td></td>
</tr>
<tr>
<td>Starter:</td>
<td>Perimeter of a box with given dimensions</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Quiz:</td>
<td>Approximately place 8 cities given only their GPS coordinates on a world map</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Introduction:</td>
<td>With a GoogleMap of Encampment on the Smart Board, map the approximate distances between the school, the Post Office, and the Cathouse Restaurant</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Instruction:</td>
<td>How could we find out exactly? Range finder, wheel, measuring tape, pacing, GPS</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Learning Activity:</td>
<td>Let's discover how far it really is, using only GPS</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>- Given a city map of Encampment Wyoming, and a GPS device with which they are already familiar, the task is to record coordinates as precisely as the instrument allows and place the information on the map.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Students are in groups of two or three - chosen by the teacher</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- One runs the GPS, one records, and one directs - changing roles at each stop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Once returned, transfer information to GoogleMaps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-- Placing and labeling pins at each point recorded on their walk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-- Using the "Measure" tool, draw lines between each pin and record the distance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change of Pace Activity:</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning Activity:</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluation</td>
<td>Quiz: Tomorrow - What does GPS mean? Name 5 ways it is used in your life</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Homework: Try it again at home, do your fence line, your access road, your irrigation ditches, etc...</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test Prep Questions:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials Needed</td>
<td>● 6 Hand-held GPS devices (Phones, Garmin, etc...) 1 per group</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Map of Encampment for each student (attached)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Student worksheet</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Student Worksheet

Encampment GPS measurements

Group members

1. What is the estimated distance determined in class in meters?
 a. School to Post Office
 b. Post Office to Cathouse
 c. Cathouse to School
 d. Total

2. Which device are you using?

3. Record the following GPS coordinates
 a. School front steps
 b. Post office front step
 c. Cathouse front sign

4. Mark and label the GPS coordinates on your GoogleMap

5. Calculate the distance via GoogleMaps using the ‘Measure’ function in meters
 a. School to Post Office
 b. Post Office to Cathouse
 c. Cathouse to School
 d. Total

6. What is the difference between the estimated distances and the measured distance?

7. Explain the difference
Reference List

National Center for Education Statistics (2000) Table 3.8 “Percent of public school teachers by number of computers available in classrooms who report assignment of various activities to a small, moderate, or large extent, or not at all”. In Teachers’ Tools for the 21st Century: A Report on Teachers’ Use of Technology. NCES 2000102.
http://nces.ed.gov/surveys/frss/inc/displaytables_inc.asp

Appendix A: Literature comparison notes

<table>
<thead>
<tr>
<th>Study Info (Author, Year, Title) / Publication Info</th>
<th>Research Question Explored by Study</th>
<th>Relationship to present study</th>
<th>Participants</th>
<th>Methods</th>
<th>Findings</th>
</tr>
</thead>
</table>
| Alexander, Bryan. "Web 2.0: A new wave of innovation for teaching and learning?" *Educause review* 41.2 (2006): 32. | Web 2.0 is a new, social media-centric application of the internet | 21st c. skills | n/a | Theoretical | - Social media has reshaped the use of the internet
- The access to so much information so easily is hard to compete with
- The evolving nature of being able to share your information with the world leads one to share and read others work
- The microcontent – one-line headlines – makes it easy to gather information quickly
- Sharing information via the internet is much easier than presenting it in person
- The web will continue to become more prevalent in everyday life, social life, business life, and education
- Grasping on to this technology driven freight train and learning to harness its power to your advantage can make or break your project or lesson |

<table>
<thead>
<tr>
<th>Study Info (Author, Year, Title) / Publication Info</th>
<th>Research Question Explored by Study</th>
<th>Relationship to present study</th>
<th>Participants</th>
<th>Methods</th>
<th>Findings</th>
</tr>
</thead>
</table>
| Identify strategies for implementation of educational systems emphasizing symmetric connections. | *Bloom's taxonomy* | n/a | Theoretical | - Learning Management Systems are not being built to fulfil the needs of the classroom
- Many personal information systems (wikis, blogs, social software) are not being utilized constructively, and many are not accessible on the school computer systems
- Very clear distinction in the capabilities of the learners and the teachers
 -- Teachers are encouraging innovation, but don’t accept or understand the technology available for this
 -- Students are hesitant to go full throttle because if a teacher doesn’t understand the methods, they won’t understand the content
- As we move forward, LMS will have to follow trends in internet use and maintain a strong component similar to that which is being used in mainstream society to remain a viable option for education |

<table>
<thead>
<tr>
<th>Study Info (Author, Year, Title) / Publication Info</th>
<th>Research Question Explored by Study</th>
<th>Relationship to present study</th>
<th>Participants</th>
<th>Methods</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Geographic Information Systems (GISystems) are underutilized in the classroom due to lack of: --- time --- training --- desire to change method of teaching --- access to appropriate hardware --- separation of disciplines in schools that make it hard to integrate GISystems into teaching schedule - Advantages to Google Earth in the classroom -- Extend borders of classroom all around the world -- Can be used at home -- Many layers are available and can be customized to the lesson -- Continuously updated information and platform - Disadvantages -- Requires internet access and good bandwidth -- Content not verified -- Time consuming – easily distracting especially for students not in the classroom</td>
<td>Show the utility of Google Earth as a tool for geography education</td>
<td>Place-based education 21st c. Skills</td>
<td>South Carolina 7th Graders</td>
<td>Lesson plan</td>
<td></td>
</tr>
</tbody>
</table>

Will teachers value the technology tools enough to warrant the time required to learn the skills

21st c. Skills

5th through 12th grade classrooms

Professional development (PD) exercise

- GIS is important for
 -- Complete in-depth studies of local issues and phenomena
 -- analyzing conditions and changes in environment and drafting solutions
 -- deepening student interest in geography through the technology used and information gathered via GIS
 -- introducing technology at an early age promotes continued use later in life

A guide to integrating technology into teacher education

21st c. Skills

4 ISTE Award-winning programs

Teacher development guide

- ISTE standards give guidelines on how teachers can be effective in integrating technology in the classroom
 - These standards have been used to reform countless teacher education programs by making use of technology
 - Training teachers how to use technology before entering the classroom can be practical and effective

<table>
<thead>
<tr>
<th>Study Info (Author, Year, Title) / Publication Info</th>
<th>Research Question Explored by Study</th>
<th>Relationship to present study</th>
<th>Participants</th>
<th>Methods</th>
<th>Findings</th>
</tr>
</thead>
</table>
| McClurg, Patricia A., and Alan Buss. "Professional development: Teachers use of GIS to enhance student learning." *Journal of Geography* 106.2 (2007): 79-87. | Will teachers value the technology tools enough to warrant the time required to learn the skills | 21st c. Skills | 5th through 12th grade classrooms | Professional development (PD) exercise | - GIS is important for
 -- Complete in-depth studies of local issues and phenomena
 -- analyzing conditions and changes in environment and drafting solutions
 -- deepening student interest in geography through the technology used and information gathered via GIS
 -- introducing technology at an early age promotes continued use later in life |
 - These standards have been used to reform countless teacher education programs by making use of technology
 - Training teachers how to use technology before entering the classroom can be practical and effective |
<table>
<thead>
<tr>
<th>Study Info (Author, Year, Title) / Publication Info</th>
<th>Research Question Explored by Study</th>
<th>Relationship to present study</th>
<th>Participants</th>
<th>Methods</th>
<th>Findings</th>
</tr>
</thead>
</table>
| Nilay T. Bümen. “Effects of the Original Versus Revised Bloom’s Taxonomy on Lesson Planning Skills: A Turkish Study Among Pre-Service Teachers.”
International Review of Education 53.4 (2007): 439-455 | The revised version of Bloom’s Taxonomy has a beneficial difference in lesson planning | *Bloom’s taxonomy* | Pre-service Turkish teachers | Lesson planning skills with old and new systems utilized | - Blooms Taxonomy is evolving and a revised system exists
- This revised edition has a number of advantages |
| Sinem Iskeceli-Tunc, Diler Oner. “Use of webquest design for in service teacher professional development.”
- Develop/improve definition for higher-order thinking Web design
- Training improved teachers’ skills in all areas and a working definition for higher-order thinking adopted
- Teachers produced activities and lessons to promote students’ HOT
- In service teachers should participate in well-designed PD |
<table>
<thead>
<tr>
<th>Study Info (Author, Year, Title) / Publication Info</th>
<th>Research Question Explored by Study</th>
<th>Relationship to present study</th>
<th>Participants</th>
<th>Methods</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denise Tatar, Mike Robinson. “Use of the Digital Camera to Increase Student Interest and Learning in High School Biology.” Journal of Science Education and Technology 12.2 (2003): 89-95</td>
<td>Does the use of technology in classroom motivate students to take greater interest in lab work and increase learning?</td>
<td>21st c. Skills Citizen Science</td>
<td>Two urban high-school biology classes</td>
<td>Control group and test group – one group with digital cameras and one without</td>
<td>- Technology can radically change what and how we do it, and can amplify or extend that - Digital camera use increased learning of process skills - Tech-enabled group took more care to set up experiment than other group - Tech-enabled group made fewer mistakes in lab procedures</td>
</tr>
<tr>
<td>John M. Ritz, Szu-Chun Fan. “STEM and technology education: international state-of-the-art.” International Journal of Technology and Design Education (2014-10-08): 1-23.</td>
<td>How are different countries perceptions of STEM education discussions effective?</td>
<td>21st c. Skills</td>
<td>20 international technology education scholars’ papers</td>
<td>Survey research</td>
<td>- Some countries believe STEM education is best done by separating the four subjects - Some feel they should be integrated - Many believe it is a combination - Researching STEM education because it is a means to improve performance - Little action has been made to modify educational systems to better deliver - Countries are providing PD to teachers</td>
</tr>
</tbody>
</table>

Integrating ISTE NETS for Teachers should complement and support current efforts

<table>
<thead>
<tr>
<th>21st c. Skills</th>
<th>n/a</th>
<th>Theoretical</th>
</tr>
</thead>
</table>

- Using existing standards like 1994 Geography for Life standards as content standards for new teachers is essential
- Alternate framework is proposed infusing GIS and GIScience into teacher education programs
- ISTE NETS used to modernize teacher education and standards

Knowing the standards: How do we learn them?

<table>
<thead>
<tr>
<th>21st c. Skills</th>
<th>n/a</th>
<th>Theoretical</th>
</tr>
</thead>
</table>

- Giving three different “Activities” at different quality of delivery
- Exercising creativity is one of the best ways to gain a deep understanding of concepts

How to ensure university geology departments continue to receive a steady stream of majors?

<table>
<thead>
<tr>
<th>21st c. Skills</th>
<th>n/a</th>
<th>Theoretical</th>
</tr>
</thead>
</table>

- NGSS are critical, but require support of geoscientists nationwide
- State-level support needed to implement NGSS successfully
- NGSS emphasize earth-science topics more than ever before
- Up-to-date topics
- Increased rigor and prominence of earth-science content in K-12 classrooms

<table>
<thead>
<tr>
<th>Study Info (Author, Year, Title) / Publication Info</th>
<th>Research Question Explored by Study</th>
<th>Relationship to present study</th>
<th>Participants</th>
<th>Methods</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Title</td>
<td>Journal</td>
<td>Volume/Issue/Year</td>
<td>Summary</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Okhee Lee, Emily C. Miller, Rita Januszyk</td>
<td>“Next Generation Science Standards: All Standards, All Students.”</td>
<td>Journal of Science Teacher Education</td>
<td>25.2 (2014)</td>
<td>223-233: Are the NGSS without bias and applicable to all students? Science, technology, society</td>
<td></td>
</tr>
</tbody>
</table>

- NGSS and Framework for K-12 Science Education are shaping the future of science education
- In-depth look into the suggestions given by the new standards
- Ensures all standards are equitable and without bias
- Suggestions and directions on how to make the standards accessible to all
- As the nation accepts NGSS, diversity will continue to be an important issue
<table>
<thead>
<tr>
<th>Study Info (Author, Year, Title) / Publication Info</th>
<th>Research Question Explored by Study</th>
<th>Relationship to present study</th>
<th>Participants</th>
<th>Methods</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subramaniam, Mega, et al. "Crosswalk between the "Framework for K-12 Science Education" and "Standards for the 21st-Century Learner": School Librarians as the Crucial Link." School Library Research 16 (2013).</td>
<td>How can a librarian facilitate the learning of standards, skills, dispositions, and responsibilities w/r to the Standards and the Framework?</td>
<td>21st c. Skills</td>
<td>4 School librarians</td>
<td>Design-based research</td>
<td>- Librarians are a key link between information and students - Shows links between the Framework and Standards - Analyzed librarian’s work and their study, and how they serve as a link between students and information - Focuses on many roles that librarians play</td>
</tr>
<tr>
<td>Study Info (Author, Year, Title) / Publication Info</td>
<td>Research Question Explored by Study</td>
<td>Relationship to present study</td>
<td>Participants</td>
<td>Methods</td>
<td>Findings</td>
</tr>
<tr>
<td>--</td>
<td>-----------------------------------</td>
<td>-------------------------------</td>
<td>--------------</td>
<td>---------</td>
<td>---------</td>
</tr>
</tbody>
</table>
Appendix B: Plan B Project Defense Slideshow

David Goff
Benefits and Methods of Integrating Geospatial Technology in both Educational and Professional Realms of STEM Education
University of Wyoming Plan B Masters Defense
23 April, 2015

Introduction

- About Me
- My research
- My product – eldergoff.wix.com/gps-gps
- Lasting Benefits
- Questions
About Me

- Family
- Education and Certificates
 - Physics and Mathematics
 - Teaching
 - SMTC
- Teaching Career
 - Middle and High School
 - University
- United States Air Force
 - Officer Corps (Trainers)
 - Enlisted Corps (Trainees)
- Future Plans

Introduction

- My research
- Abstract
- Theoretical Framework
 - Literature Review
- PBE, Citizen Science, 21st Century Science Skills
- Standards
- My product – eldergoff.wix.com/gps-gps
- Lasting Benefits
Place-Based Education

- Taking teaching outside the classroom
 - Utilizing the community to add meaning to education
 - Engaging students in hands-on, beneficial projects
 - Supporting PBE with classroom instruction
 - Supporting classroom instruction with PBE
- Moving from static to dynamic teaching realms
 - Broaden teacher base
 - Capture interest of more students
- Increase learning
- Decrease discipline issues

Citizen Science

- Integrating classroom instruction with world-wide research projects
 - Student centered data collection
 - Real results
 - Bigger picture vision
 - Meaningful activities brings engagement
- Benefits to researchers
 - Many more points of data collection available
 - Different points of view available
 - Students can create own projects to share
21st Century Science Skills

- Skills necessary for 21st Century success
 - Information Literacy
 - Collaboration
 - Communication
 - Creativity & Innovation
 - Problem Solving
 - Responsible Citizenship
- Ever-evolving and adapting

Science Standards

- A Framework for K-12 Science Education
 - Cross-cutting Concepts
 - Practices
 - Core Ideas
- Next Generation Science Standards
 - Stemming from the Framework
- International Society for Technology in Education
 - Teachers
 - Students
My Product
http://eldergoff.wix.com/gps-gps

- Why wix.com?
- Educator Resources
 - Methodologies
 - What's GPS
 - All about Google Maps
- For Learners
 - What's GPS
 - Google Maps
 - Fun with GPS
- More Info
 - References
 - Standards
 - About Me / Contact / Terms of Use
Educator Resources

Educational Research

Research is the foundation of modern education, helping students understand the world around them by integrating mathematics, science, and everyday life. This site contains free research topics in geography, physics, and other fields. Here you will find tools to help you guide your students through the learning of GPS.

All About GPS

GPS is a simple and easy concept to understand and use, but what good is it in your classroom? You will find ways to use GPS effectively and efficiently to students of any age and ability. Don’t let any of your students miss out on the fun and activities that will help you with your understanding as well.

Google Maps

Google Maps is more than just a simple map showing you where you are. It can also show you where you’ve been, where you’re going, and even where you’re most likely to go next. Features include Street View, 3D Maps, and much more. These tools can make these maps useful in many situations, including distance learning and self-directed study.

Educational research on Science Teaching

01 Place-Based Education

Place-based Education is the practice of teaching and learning about the environment in a dynamic, applicable, and engaging manner. It involves using hands-on, real-world activities to help students develop a deeper understanding of their place. Research has shown that place-based education can lead to increased student engagement, improved academic performance, and a greater appreciation for the natural world.

Place-based education involves creating meaningful connections between the classroom and the world outside. By bringing the outside world into the classroom, teachers can help students see the relevance of what they are learning and make connections between the concepts they are studying and their own experiences. This can be done through field trips, guest speakers, or by using local resources in the classroom.

Place-based education also encourages students to think critically and creatively about the world around them. By exploring their own environment, students can develop a deeper understanding of the natural world and the human impact on it. This can include topics such as climate change, pollution, and the importance of conservation.

For more information on place-based education, visit the Teaching Science website. The site provides resources and tools to help teachers integrate place-based education into their curriculum and provide students with a deeper understanding of the world they live in.
GPS - Goff's Practical Solutions

All about GPS - for the Educator

01 What is GPS?
Global Positioning System (GPS) technology and dependency is bound to grow even more to date from phones to cars to airplanes. It allows us to pinpoint locations on the globe using information relayed from a network of satellites. You need to know what it is and how it works in order to teach students to make the best choices for use.

Links to GPS sites:
https://www.gps.gov/what-is-gps
https://www.gps.gov/glossary
http://www.columbia.edu/~rs160/emptyindex.html

02 How to Teach GPS
Teaching GPS successfully will require use of non-traditional teaching techniques, many of which are found at http://www.teachinggps.com

Links to teaching GPS:
https://www.teachinggps.com/educators

03 GPS Teaching Tools
The following tools can help you use GPS in the classroom to bridge the gap between classroom and real-world applications.

Political Maps - Maps that are drawn
Explore the following maps of the Google political maps:
- The world view shows political boundaries, major cities, and more.
- The United States map shows states, cities, and more.
- The United Kingdom shows counties, cities, and more.
- The Europe map shows countries, cities, and more.
- The Asia map shows countries, cities, and more.
- The Africa map shows countries, cities, and more.
- The South America map shows countries, cities, and more.
- The Central America map shows countries, cities, and more.
- The North America map shows countries, cities, and more.

Satellite Maps - Pictures from space with map info
All the options available in political maps are available in Satellite maps. The benefit to Satellite maps is obvious - you can actually see the world from space. This is especially true if you're studying geography, astronomy, or other related fields.

Picture Maps - Photo additions to augment map info
These maps combine the best of both worlds - real-world photos and geographical information. This is especially useful for studying cities, landscapes, and other large-scale features.
GPS Activities
This page offers links to Geocaching sites, articles on fun games to play using your GPS, interesting ideas to do on a date using GPS, and more.

01 Geocaching Sites

02 Other Creative Ideas for GPS Use

References for this project

Place-Based Education

Citizen Science
Lasting Benefits

- Accessible
 - World-wide
 - 24/7
 - Mobile-friendly
- Wide Audience
 - Teachers
 - Students
 - Professionals
- Easy to Maintain