Amplification of magnetoresistance and Hall effect of Fe$_3$O$_4$ – SiO$_2$ – Si structure

Xianjie Wang
Harbin Institute of Technology, People's Republic of China; University of Wyoming

Yu Sui
Harbin Institute of Technology, People's Republic of China; International Center for Materials Physics, People's Republic of China

Jinke Tang
University of Wyoming, jtang2@uwyo.edu

Yao Li
Harbin Institute of Technology, People's Republic of China

Xingquan Zhang
Harbin Institute of Technology, People's Republic of China

See next page for additional authors

Follow this and additional works at: https://repository.uwyo.edu/physics_astronomy_facpub

Part of the [Physical Sciences and Mathematics Commons](https://repository.uwyo.edu/physics_astronomy_facpub)

Publication Information

Amplification of magnetoresistance and Hall effect of Fe 3 O 4 – SiO 2 – Si structure
Xianjie Wang, Yu Sui, Jinke Tang, Yao Li, Xingquan Zhang, Cong Wang, Zhiguo Liu, and Wenhui Su

Citation: Journal of Applied Physics 105, 07B101 (2009); doi: 10.1063/1.3065987
View online: http://dx.doi.org/10.1063/1.3065987
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/105/7?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Very high thermoelectric power factor in a Fe3O4/SiO2/p-type Si(100) heterostructure

Structural and magnetic properties of epitaxial Fe 3 O 4 / ZnO and ZnO / Fe 3 O 4 bilayers grown on c-Al 2 O 3 substrate

Amplification of magnetoresistance of magnetite in an Fe 3 O 4 – Si O 2 – Si structure

Formation of ferromagnetic interface between β - Fe Si 2 and Si(111) substrate

Hybrid Fe 3 O 4 / Ga As (100) structure for spintronics
J. Appl. Phys. 97, 10C313 (2005); 10.1063/1.1857432
Amplification of magnetoresistance and Hall effect of Fe$_3$O$_4$–SiO$_2$–Si structure

Xianjie Wang,1,2 Yu Sui,1,3,a Jinke Tang,2 Yao Li,4 Xingquan Zhang,1 Cong Wang,1
Zhiguo Liu,1 and Wenhui Su1,3

1Department of Physics, Harbin Institute of Technology, Center for Condensed Matter Science and Technology (CCMST), Harbin 150001, People’s Republic of China
2Department of Physics and Astronomy, University of Wyoming, Laramie, Wyoming 82071, USA
3International Center for Materials Physics, Academia Sinica, Shenyang 110015, People’s Republic of China
aCenter for Composite Materials, Harbin Institute of Technology, Harbin 150001, People’s Republic of China

(Received 13 November 2008; revised 10 September 2008; accepted 1 November 2008; published online 9 February 2009)

In this paper, we report the magnetoresistance and the Hall effect in the Fe$_3$O$_4$–SiO$_2$–Si structure. Single phase magnetite films were deposited on n-type silicon substrates using laser molecular beam epitaxy. When the temperature is increased beyond 230 K, the resistance drops rapidly because the conduction path starts to switch from the Fe$_3$O$_4$ film to the inversion layer underneath the native SiO$_2$ via thermally assisted tunneling. A large negative magnetoresistance is observed at about 230 K, and this maximum shifts to higher temperature with increasing film thickness. Hall effect data of the structure confirm that the carriers are holes above the channel switching temperature. Our results confirm that the large magnetoresistance at ~230 K originates from the amplification of the magnetoresistance of the magnetite in the Fe$_3$O$_4$–SiO$_2$–Si structure. © 2009 American Institute of Physics. [DOI: 10.1063/1.3065987]

I. INTRODUCTION

Half-metallic oxide Fe$_3$O$_4$ films have long been investigated due to its speculated high spin polarization and high Curie temperature of 840 K, which is desirable for spin electronic device applications. One of the main device concepts involving Fe$_3$O$_4$ is the magnetic tunnel junction (MTJ). Magnetic read heads based on MTJs have been on the market for several years. However, the MTJ uses transition-metal electrodes that have typical spin polarization of 40%. If 100% spin polarization of the tunneling electrons can be realized as expected, MTJs that show higher magnetoresistance (MR) and thus higher signal will find application in magnetic random access memory and magnetic read heads. However, Fe$_3$O$_4$ based MTJs have so far shown small tunneling MR.

Recently, we observed the amplification of MR of magnetite in an Fe$_3$O$_4$–SiO$_2$–Si structure with current-controlled channel switching of electron transport between the Fe$_3$O$_4$ film and the inversion layer underneath the SiO$_2$ via thermally assisted tunneling. Similar conductance channel switching has been observed in other M–SiO$_2$–Si structures (M=metals), and attributed to the formation of an inversion layer at the Si–SiO$_2$ interface. The inversion layer is the basis for metal-oxide-semiconductor field-effect transistor (MOSFET), which provides a low resistive path for carrier transport along the surface of the Si substrate. The amplification of MR in this Fe$_3$O$_4$–SiO$_2$–Si MOSFET structure may have useful applications. Clearer experimental evidence and understanding of the mechanism of the amplification of the MR are, however, still lacking.

In this paper, we report the MR and the Hall effect in the Fe$_3$O$_4$–SiO$_2$–Si structure. A large negative MR is observed at about 230 K. Hall effect data of the structure confirm that the carriers are holes above the channel switching temperature, and suggest the large MR originates from the amplification of the MR of the magnetite in the Fe$_3$O$_4$–SiO$_2$–Si structure.

II. EXPERIMENT

The Fe$_3$O$_4$ thin films were grown by laser molecular beam epitaxy on n-type Si (100) substrates that have a 1.5 nm thick native SiO$_2$ layer on the surface. The target was α-Fe$_2$O$_3$ that was prepared by pressing α-Fe$_2$O$_3$ powders. The films were prepared in a vacuum of 10^{-7} Torr at substrate temperature of 350 °C. The pulsed excimer laser uses KrF ($\lambda=248$ nm) and produces a laser beam with an intensity of $1\sim2$ J/cm2 and a repetition rate of 3 Hz. The deposition rate is about 1 nm/s and the film thickness is 35 nm. After deposition, the film and substrate were annealed for 30 min under the same condition. The resistivity and Hall effect were measured using a physical properties measurement system from Quantum Design.

III. RESULTS AND DISCUSSION

Figure 1 shows the temperature dependence of zero-field resistance of the Fe$_3$O$_4$–SiO$_2$–Si structure measured in the plane of the Fe$_3$O$_4$ film. Below 200 K, the resistance in-
The channel switching in the Fe$_3$O$_4$–SiO$_2$–Si structure exhibits bias voltage dependence that can be explained on the basis of a MOSFET. Here the ferromagnetic Fe$_3$O$_4$ film is the gate. The carrier transport of the Fe$_3$O$_4$–SiO$_2$–Si structure is strongly influenced by the voltage on the Fe$_3$O$_4$ film. The inset in Fig. 1 shows the temperature dependence of the resistance at different measuring currents. Clearly the switching temperature increases with increasing measuring currents. This current-dependence switching temperature is due to the following. Higher current results in higher voltage on the Fe$_3$O$_4$ film, which can attract electrons from the n-type Si substrate and reduce the hole conductance in the inversion layer. As a result, the carriers emitted cross the SiO$_2$ layer by thermal excitation will accumulate at the interface region of SiO$_2$/Si. This charge accumulation can raises the effective barrier height and prevent the transfer of the carriers from the film to the inversion layer. Therefore, the current in the inversion layer reverts to the film at higher voltage and the current switching temperature is increased. This current-dependent switching temperature, combined with the Hall data, suggests that the inversion layer plays an important role in the transport in the Fe$_3$O$_4$–SiO$_2$–Si structure.

A large low field negative MR was found in Fe$_3$O$_4$–SiO$_2$–Si at the channel switching temperature, as shown in Fig. 3, where the resistance was measured in the plane of the Fe$_3$O$_4$ film. The MR is defined as $MR=\frac{R_{(H)}}{R_{(0)}}-1$, where $R_{(0)}$ and $R_{(H)}$ are the measured resistance of the sample in zero field and external field H, respectively. The magnetic field was applied perpendicular to both the film and the current. At low temperature, the current only flows in the Fe$_3$O$_4$ film and a small negative MR is observed. The MR value is much lower than the reported data on pressed Fe$_3$O$_4$ powders and polycrystalline films (the maximum MR of Fe$_3$O$_4$ powders is about 22.8% at 280 K and 14 T) but it is similar to the data of typical thin Fe$_3$O$_4$ films. Near the switching temperature of 230 K, the Fe$_3$O$_4$–SiO$_2$–Si structure shows a greatly magnified low field negative MR, as shown in Fig. 3(a). When a magnetic field is applied, the measured resistance of the film drops, which leads to a reduced voltage on the film and opens up the inversion layer, and a much enhanced low-field negative MR of -1.91% at 0.05 T is observed. The enhanced low-field negative MR is the amplification of the negative MR of the Fe$_3$O$_4$ film in this Fe$_3$O$_4$–SiO$_2$–Si structure, similar to the amplification effect of a MOSFET. As discussed above, when a magnetic field is applied to the film, the resistance of the Fe$_3$O$_4$ film is reduced, which means the voltage on the Fe$_3$O$_4$ film (gate voltage) decreases. The conductance of the holes in the inversion layer increases accordingly. Thus the measured resistance is greatly reduced.

Figure 3(b) shows the temperature dependence of MR data of Fe$_3$O$_4$–SiO$_2$–Si with different Fe$_3$O$_4$ film thicknesses measured at 0.05 T. The maximum MR value shifts to higher temperature with increasing film thickness. This is consistent with the change in the channel switching temperature of the Fe$_3$O$_4$–SiO$_2$–Si structure for the 75 and 35 nm thick Fe$_3$O$_4$ films, 280 and 230 K, respectively. The amplification effect is the strongest near the switching tempera-

FIG. 1. (Color online) Temperature dependence of the zero field resistance of the Fe$_3$O$_4$–SiO$_2$–Si structure. Inset shows the temperature dependence of resistance at different measuring currents.

FIG. 2. Hall data of the Fe$_3$O$_4$(35 nm)–SiO$_2$–Si structure at 350 K. The channel switching in the Fe$_3$O$_4$–SiO$_2$–Si structure increases with decreasing temperature, which shows a typical behavior of thin Fe$_3$O$_4$ film. However, the resistance drops sharply at about 230 K and becomes metallic at higher temperatures. Similar temperature dependence of resistance have been observed in an Fe$_3$C–SiO$_2$–Si structure and explained in terms of the current channel switching between the upper Fe$_3$C film and the inversion layer due to the thermally assisted tunneling by Tang et al. In Fe$_3$O$_4$–SiO$_2$–Si, the carriers are electrons in the Fe$_3$O$_4$ film and should be holes in the inversion layer on n-type Si substrate, thus the Hall effect is an effective tool and used to confirm the conducting channel switching effect. Figure 2 shows the Hall voltage for the Fe$_3$O$_4$–SiO$_2$–Si structure at 350 K. It is well known that the carriers of pure Fe$_3$O$_4$ film are electrons with extraordinary Hall and the Curie temperature of Fe$_3$O$_4$ film is about 840 K. Thus, the extraordinary Hall effect for pure Fe$_3$O$_4$ film is expected at 350 K. However, the measured result of Hall data is an ordinary Hall effect and the carriers are holes at 350 K. These data demonstrate the channel switching from data is an ordinary Hall effect and the carriers are holes at expected at 350 K. However, the measured result of Hall data, suggests that the inversion layer plays an important role in the transport in the Fe$_3$O$_4$–SiO$_2$–Si structure. Inset shows the temperature dependence of the resistance at different measuring currents. Clearly the switching temperature increases with increasing measuring currents. This current-dependence switching temperature is due to the following. Higher current results in higher voltage on the Fe$_3$O$_4$ film, which can attract electrons from the n-type Si substrate and reduce the hole conductance in the inversion layer. As a result, the carriers emitted cross the SiO$_2$ layer by thermal excitation will accumulate at the interface region of SiO$_2$/Si. This charge accumulation can raises the effective barrier height and prevent the transfer of the carriers from the film to the inversion layer. Therefore, the current in the inversion layer reverts to the film at higher voltage and the current switching temperature is increased. This current-dependent switching temperature, combined with the Hall data, suggests that the inversion layer plays an important role in the transport in the Fe$_3$O$_4$–SiO$_2$–Si structure. A large low field negative MR was found in Fe$_3$O$_4$–SiO$_2$–Si at the channel switching temperature, as shown in Fig. 3, where the resistance was measured in the plane of the Fe$_3$O$_4$ film. The MR is defined as $MR=\frac{R_{(H)}}{R_{(0)}}-1$, where $R_{(0)}$ and $R_{(H)}$ are the measured resistance of the sample in zero field and external field H, respectively. The magnetic field was applied perpendicular to both the film and the current. At low temperature, the current only flows in the Fe$_3$O$_4$ film and a small negative MR is observed. The MR value is much lower than the reported data on pressed Fe$_3$O$_4$ powders and polycrystalline films (the maximum MR of Fe$_3$O$_4$ powders is about 22.8% at 280 K and 14 T) but it is similar to the data of typical thin Fe$_3$O$_4$ films. Near the switching temperature of 230 K, the Fe$_3$O$_4$–SiO$_2$–Si structure shows a greatly magnified low field negative MR, as shown in Fig. 3(a). When a magnetic field is applied, the measured resistance of the film drops, which leads to a reduced voltage on the film and opens up the inversion layer, and a much enhanced low-field negative MR of -1.91% at 0.05 T is observed. The enhanced low-field negative MR is the amplification of the negative MR of the Fe$_3$O$_4$ film in this Fe$_3$O$_4$–SiO$_2$–Si structure, similar to the amplification effect of a MOSFET. As discussed above, when a magnetic field is applied to the film, the resistance of the Fe$_3$O$_4$ film is reduced, which means the voltage on the Fe$_3$O$_4$ film (gate voltage) decreases. The conductance of the holes in the inversion layer increases accordingly. Thus the measured resistance is greatly reduced.

FIG. 2. Hall data of the Fe$_3$O$_4$(35 nm)–SiO$_2$–Si structure at 350 K.
At lower temperatures, the current runs mainly in the film, while it runs mainly in the inversion layer above the switching temperature. Therefore the amplification of the MR of the film is not as obvious. The value of the MR enhancement seems to increase with decreasing Fe$_3$O$_4$ film thickness, which suggests that reducing the film thickness may enhance the amplification effect. Thinner films have higher resistance, so the carriers are emitted into the Si inversion layer at lower temperature, which corresponds to a lower channel switching temperature.

IV. CONCLUSIONS

In summary, we observed the current channel switching and greatly amplified low-field negative MR of Fe$_3$O$_4$ film in a Fe$_3$O$_4$–SiO$_2$–Si structure at the same temperature. Hall data imply that the inversion layer play an important role in the charge transport of the Fe$_3$O$_4$–SiO$_2$–Si structure. The much enhanced low field negative MR achieved in the Fe$_3$O$_4$–SiO$_2$–Si structure with ultrathin Fe$_3$O$_4$ film may have useful application in spintronic devices.

This work was supported by the National Natural Science Foundation of China (Grant Nos. 10804024 and 50672019), the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (Grant No. HIT-NSRIF.2008.03), the Program for New Century Excellent Talents in University (Grant No. NCET-06-335), NSF, and UW SER/MGF.