Representations for the Drazin inverse of block cyclic matrices

M. Catral
catralm@xavier.edu

P. van den Driessche

Follow this and additional works at: http://repository.uwyo.edu/ela

Recommended Citation
DOI: https://doi.org/10.13001/1081-3810.1531

This Article is brought to you for free and open access by Wyoming Scholars Repository. It has been accepted for inclusion in Electronic Journal of Linear Algebra by an authorized editor of Wyoming Scholars Repository. For more information, please contact scholcom@uwyo.edu.
Abstract. A formula for the Drazin inverse of a block k-cyclic ($k \geq 2$) matrix A with nonzeros only in blocks $A_{i,i+1}$, for $i = 1, \ldots, k$ (mod k) is presented in terms of the Drazin inverse of a smaller order product of the nonzero blocks of A, namely $B_i = A_{i,i+1} \cdots A_{i-1,i}$ for some i. Bounds on the index of A in terms of the minimum and maximum indices of these B_i are derived. Illustrative examples and special cases are given.

Key words. Drazin inverse, Block cyclic matrix, Index.

AMS subject classifications. 15A09.

1. Introduction. We consider k-cyclic ($k \geq 2$) block real or complex matrices of the form

$$A = \begin{bmatrix}
0 & A_{12} & 0 & \cdots & 0 \\
0 & 0 & A_{23} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & A_{k-1,k} \\
A_{k1} & 0 & 0 & \cdots & 0
\end{bmatrix},$$

(1.1)

where A_{12}, \ldots, A_{k1} are block submatrices and the diagonal zero blocks are square. It is easily verified that for any matrix A of the form (1.1), the Moore-Penrose inverse A^\dagger of A is given by

$$A^\dagger = \begin{bmatrix}
0 & 0 & \cdots & 0 & A_{k1}^\dagger \\
A_{12}^\dagger & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & A_{23}^\dagger & \cdots & 0 & 0 \\
0 & 0 & \cdots & A_{k-1,k}^\dagger & 0
\end{bmatrix},$$

(1.2)

Received by the editors on February 6, 2012. Accepted for publication on April 15, 2012. Handling Editor: Leslie Hogben.

†Department of Mathematics and Computer Science, Xavier University, Cincinnati, OH 45207, USA (catralm@xavier.edu).
‡Department of Mathematics and Statistics, University of Victoria, Victoria BC V8W 3R4, Canada (pvdd@math.uvic.ca).
where \(A^\dagger_{ij} \) denotes the Moore-Penrose inverse of the block submatrix \(A_{ij} \). Note that if each of the blocks \(A_{ij} \) is square and invertible, then (1.2) gives the formula for the usual inverse \(A^{-1} \) of \(A \). We present a block formula for another type of generalized inverse, the Drazin inverse, of matrices of the form (1.1). Unlike the Moore-Penrose inverse, the Drazin inverse is defined only for square matrices.

Let \(A \) be a real or complex square matrix. The Drazin inverse of \(A \) is the unique matrix \(A_D \) satisfying

\[
\begin{align*}
AA_D &= A_D A \\
A_D AA_D &= A_D \\
A^{q+1}A_D &= A^q,
\end{align*}
\]

where \(q = \text{index } A \), the smallest nonnegative integer \(q \) such that \(\text{rank } A^{q+1} = \text{rank } A^q \). If \(\text{index } A = 0 \), then \(A \) is nonsingular and \(A_D = A^{-1} \). If \(\text{index } A = 1 \), then \(A_D = A^\# \), the group inverse of \(A \). See [1], [2], [6] and references therein for applications of the Drazin inverse.

Theorem 1.1. [2, Theorem 7.2.3] Let \(A \) be a square matrix with index \(A = q \). If \(p \) is a nonnegative integer and \(X \) is a matrix satisfying \(XAX = X \), \(AX =XA \), and \(A^{q+1}X = A^p \), then \(p \geq q \) and \(X = A_D \).

The problem of finding explicit representations for the Drazin inverse of a general 2 \(\times \) 2 block matrix of the form

\[
A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}
\]

in terms of its blocks was posed by Campbell and Meyer in [2], and special cases of this problem were the focus of several recent papers, including [3]–[10], [13], [14] and [15]. In [4] and [13], representations for 2 \(\times \) 2 block matrices matrices of the form (1.6) with \(A_{11} \) and \(A_{22} \) being square zero diagonal blocks were presented. Such block matrices were called bipartite (or 2-cyclic), and in this article, we extend the results given in [4] to general block k-cyclic matrices as defined in (1.1).

2. Drazin inverse formula for block cyclic matrices. Let \(A \) be a block k-cyclic matrix of the form given in (1.1). For our Drazin inverse formula we introduce some notation that is also used in writing powers of \(A \). For \(i = 2, \ldots, k-1 \), let \(B_i \) be the square matrix defined by

\[
B_i = A_{i,i+1} \cdots A_{k-1,k} A_{k1} A_{12} \cdots A_{i-1,i},
\]

with \(B_1 = A_{12} A_{23} \cdots A_{k-1,k} A_{k1} \) and \(B_k = A_{k1} A_{12} \cdots A_{k-1,k} \), i.e., subscripts are taken mod \(k \). For ease of notation, we define the matrix product

\[
A_{i\rightarrow j} := A_{i,i+1} A_{i+1,i+2} \cdots A_{j-1,j},
\]
for \(j \neq i \). Whenever it arises, we use the convention \(A_{i \rightarrow i} = I \), an identity matrix. For example, if \(k = 4 \) then

\[
A = \begin{pmatrix}
A_{11} & A_{12} & A_{13} & A_{14} \\
A_{21} & A_{22} & A_{23} & A_{24} \\
A_{31} & A_{32} & A_{33} & A_{34} \\
A_{41} & A_{42} & A_{43} & A_{44}
\end{pmatrix}
\]

and by Lemma 2.1 \(B_{3} = A_{34}A_{41}A_{12}A_{23} \). Observe that \(B_{i} = A_{i \rightarrow j}A_{j \rightarrow i} \), for any \(j \in \{1, \ldots, k\} \setminus \{i\} \).

Lemma 2.2. For all \(i \neq j \), \(B_{i}A_{i \rightarrow j} = A_{i \rightarrow j}B_{j} \).

Proof. \(B_{i}A_{i \rightarrow j} = (A_{i \rightarrow j}A_{j \rightarrow i})^{k}A_{i \rightarrow j} = A_{i \rightarrow j}A_{j \rightarrow i}(A_{i \rightarrow j}A_{j \rightarrow i})^{k-1}A_{i \rightarrow j} = A_{i \rightarrow j}(A_{j \rightarrow i}A_{i \rightarrow j})^{k} = A_{i \rightarrow j}B_{j}^{k} \).

Lemma 2.3. For all \(i \neq j \), \(B_{i}^{D}A_{i \rightarrow j} = A_{i \rightarrow j}B_{j}^{D} \). Hence, if \(\ell \neq i, j \) satisfies \(A_{i \rightarrow j} = A_{i \rightarrow \ell}A_{\ell \rightarrow j} \), then \(B_{i}^{D}A_{i \rightarrow j} = A_{i \rightarrow j}B_{j}^{D} = A_{i \rightarrow \ell}B_{\ell}^{D}A_{\ell \rightarrow j} \).
Proof. \(B_i^D A_{i\rightarrow j} = (A_{i\rightarrow j}A_{j\rightarrow i})^D A_{i\rightarrow j} = A_{i\rightarrow j}(A_{j\rightarrow i}A_{i\rightarrow j})^D = A_{i\rightarrow j}B_j^D \), where the second equality is due to [4, Lemma 2.4]. □

With the above notation, we now give a formula for the Drazin inverse of a \(k \)-cyclic matrix \(A \) given by (1.1).

Theorem 2.4. Let \(A \) be as in (1.1) with associated matrices \(B_i \) defined as in (2.1) and \(A_{i\rightarrow j} \) defined in (2.2). Then, for all \(i = 1, \ldots, k \),

\[
A_D = \begin{bmatrix}
0 & 0 & \cdots & 0 & A_{1\rightarrow i}B_i^D A_{i\rightarrow k} \\
A_{2\rightarrow i}B_i^D A_{i\rightarrow 1} & 0 & \cdots & 0 & 0 \\
0 & A_{3\rightarrow i}B_i^D A_{i\rightarrow 2} & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & A_{k\rightarrow i}B_i^D A_{i\rightarrow k-1} & 0
\end{bmatrix}.
\]

Moreover, if \(\text{index } B_i = s_i \), then \(\text{index } A \leq ks_i + k - 1 \).

Proof. Denote the matrix on the right hand side of (2.6) by \(X \). Performing block multiplication gives

\[
AX = \begin{bmatrix}
A_{12}A_{2\rightarrow 1}B_i^D A_{i\rightarrow 1} & 0 & \cdots & 0 \\
0 & A_{23}A_{3\rightarrow 1}B_i^D A_{i\rightarrow 2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots \\
0 & \cdots & 0 & A_{k1}A_{1\rightarrow i}B_i^D A_{i\rightarrow k}
\end{bmatrix}
\]

\[
A_{12}A_{2\rightarrow 1}A_{1\rightarrow 1}B_1^D & 0 & \cdots & 0 \\
0 & A_{23}A_{3\rightarrow 1}A_{1\rightarrow 2}B_1^D & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots \\
0 & \cdots & 0 & A_{k1}A_{1\rightarrow i}A_{i\rightarrow k}B_k^D
\]

(by Lemma 2.3)

\[
= \begin{bmatrix}
B_1B_1^D & 0 & \cdots & 0 \\
0 & B_2B_2^D & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & B_kB_k^D
\end{bmatrix}.
\]
and by using Lemma 2.3 again

\[XA = \begin{bmatrix} A_{1\rightarrow i} B_i^D A_{i\rightarrow k} A_{k+1} & 0 & \cdots & 0 \\ 0 & A_{2\rightarrow i} B_i^D A_{i\rightarrow k+1} & \cdots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & A_{k\rightarrow i} B_i^D A_{i\rightarrow k+1} \end{bmatrix} \]

\[= \begin{bmatrix} B_i^D A_{1\rightarrow i} A_{i\rightarrow k+1} & 0 & \cdots & 0 \\ 0 & B_i^D A_{2\rightarrow i} A_{i\rightarrow k+1} & \cdots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & B_i^D A_{k\rightarrow i} A_{i\rightarrow k+1} \end{bmatrix} \]

\[= \begin{bmatrix} B_i^D B_1 & 0 & \cdots & 0 \\ 0 & B_i^D B_2 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & B_i^D B_k \end{bmatrix} \begin{bmatrix} B_i^D & 0 & \cdots & 0 \\ 0 & B_i^D & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & B_i^D \end{bmatrix} \]

\[= AX, \]

since \(B_i^D B_i = B_i B_i^D \) by (1.3). Also, block-multiplying \(X \) with \(AX \) gives

\[XAX = X(AX) \]

\[= \begin{bmatrix} 0 & 0 & \cdots & 0 & A_{1\rightarrow k} B_i^D B_k B_i^D \\ A_{2\rightarrow i} B_i^D B_i^D & 0 & \cdots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & A_{k\rightarrow k-1} B_i^D B_{k-1} B_i^D \end{bmatrix} \]

\[= X, \text{ by Lemma 2.3 and since } B_i^D B_i B_i^D = B_i^D \text{ by (1.4).} \]

Let \(i \) be any integer in \(\{1, \ldots, k\} \) and suppose that index \(B_i = s_i = s \). Then using (2.3) and Lemma 2.2

\[A^{k+k} X = A^{k(s+1)} X \]

\[= \begin{bmatrix} 0 & 0 & \cdots & 0 & A_{1\rightarrow i} B_i^{s+1} B_i^D A_{i\rightarrow k} \\ A_{2\rightarrow i} B_i^{s+1} B_i^D A_{i\rightarrow k+1} & 0 & \cdots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & A_{k\rightarrow i} B_i^{s+1} B_i^D A_{i\rightarrow k-1} & \cdots & 0 & 0 \\ 0 & \cdots & 0 & A_{k\rightarrow i} B_i^{s+1} B_i^D A_{i\rightarrow k-1} & 0 \end{bmatrix} . \]
Since index $B_i = s$, it follows by (1.5) that $B_i^{s+1}B_i^D = B_i^s$. Thus, using Lemma 2.2 and $A_{\ell \rightarrow i}, A_{i \rightarrow j} = A_{\ell \rightarrow j}$ for $\ell \neq j$,

$$A^{ks+k}X = \begin{bmatrix}
0 & 0 & \cdots & 0 & A_{1 \rightarrow k}B_k^s \\
A_2^{s-1}B_1^s & 0 & \cdots & 0 & 0 \\
0 & A_3^{\rightarrow 2}B_2^s & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & A_{k \rightarrow k-1}B_{k-1}^s & 0 \\
\end{bmatrix} = A^{ks+k-1},$$

from (2.5) by using Lemma 2.2. By Theorem 1.1, index $A \leq ks+k-1$ and $X = A^D$. \[Q.E.D.\]

Thus, the Drazin inverse of a k-cyclic matrix is reduced to calculating the Drazin inverse of the smallest order Drazin inverse of any of the matrix products B_i.

Corollary 2.5. If A of the form in (1.1) is nonnegative and has at least one $B_i^D \geq 0$, then A^D is nonnegative.

The following example illustrates Theorem 2.4 and Corollary 2.5.

Example 2.6. Let

$$A = \begin{bmatrix}
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
\end{bmatrix} = \begin{bmatrix}
0 & A_{12} & 0 \\
0 & 0 & A_{23} \\
A_{31} & 0 & 0 \\
\end{bmatrix}.$$

Then $B_1 = A_{12}A_{23}A_{31} = 1, B_2 = A_{23}A_{31}A_{12} = \frac{1}{2}J_2$ (where J_2 is 2×2 all ones matrix) and $B_3 = A_{31}A_{12}A_{23} = 1$. Note that index $B_i = 0$ and $B_i^D = B_i^{-1} = 1$.

Using Theorem 2.4,

$$A^D = \begin{bmatrix}
0 & 0 & B_1^D A_{12}A_{23} \\
A_2^{s-1}B_1^s & 0 & 0 \\
0 & A_3^{\rightarrow 2}B_2^s & 0 \\
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & \frac{1}{2} \frac{1}{2} & 0 \\
\end{bmatrix} = A^2.$$

In fact, rank $A = \text{rank} A^2$, hence $A^D = A^\# = A^2$ agreeing with Theorem 2.2 in [11].

3. Index of A in relation to the indices of the block products. With A as in (1.1), for $j \geq 0$, by (2.3) and (2.4),

\[\text{(3.1)} \quad \text{rank } A^{kj} = \text{rank } B_1^j + \text{rank } B_2^j + \cdots + \text{rank } B_k^j\]

\[\text{(3.2)} \quad \text{rank } A^{kj+1} = \text{rank } B_1^jA_{12} + \text{rank } B_2^jA_{23} + \cdots + \text{rank } B_k^jA_{ki}.\]
The following rank inequality is used throughout the proof of Lemma 3.2 and can be found in standard linear algebra texts (see, e.g., [12 page 13]).

LEMMA 3.1. (Frobenius Inequality) If U is $m \times n$, V is $n \times p$ and W is $p \times q$, then

$$\text{rank } UV + \text{rank } V = \text{rank } V + \text{rank } UVW.$$

LEMMA 3.2. Let A be as in (1.1) with associated matrices B_i defined in (2.1), and let $s = \text{index } B_i \geq 1$ for some $i \in \{1, \ldots, k\}$. Then $\text{rank } A^{k_s-k+1} < \text{rank } A^{k_s-k}$.

Proof. Let $s = \text{index } B_i$ for some $i \in \{1, \ldots, k\}$. From (3.2),

$$\text{rank } A^{k_s-k+1} = \text{rank } A^{k(s-1)+1} = \text{rank } B_i^{s-1} A_{12} + \text{rank } B_i^{s-2} A_{23} + \text{rank } B_i^{s-3} A_{34} + \cdots + \text{rank } B_i^{k_s-1} A_{k1},$$

where the terms can be reordered as

$$\text{rank } B_i^{s-1} A_{i,i+1} + \text{rank } B_i^{s-1} A_{i+1,i+2} + \cdots + \text{rank } B_i^{s-1} A_{k1} + \text{rank } B_i^{s-1} A_{12} + \cdots$$

(3.3) + \text{rank } B_i^{k_s-1} A_{i-1,1}.

Using Lemma 2.2 the first two terms in the expression in (3.3) can be written as

$$\text{rank } A_i B_i^{s-1} + \text{rank } B_i^{s-1} A_{i+1,i+2},$$

and using the Frobenius inequality (Lemma 3.1),

$$\text{rank } B_i^{s-1} A_{i,i+1} + \text{rank } B_i^{s-1} A_{i+1,i+2} \leq \text{rank } B_i^{s-1} + \text{rank } A_i B_i^{s-1} A_{i+1,i+2} = \text{rank } B_i^{s-1} + \text{rank } B_i^{s-1} A_{i-1,1},$$

where the equality is again due to Lemma 2.2. Thus,

$$\text{rank } A^{k_s-k+1} \leq \text{rank } B_i^{s-1} + \text{rank } B_i^{s-1} A_{i-1,1} \leq \text{rank } B_i^{s-1} + \text{rank } B_i^{s-1} A_{i-1,1} + \text{rank } B_i^{s-1} A_{i-1,1} + \text{rank } A_i B_i^{s-1} A_{i+1,i+2}.$$

(3.4)

Applying Lemma 2.2 and the Frobenius inequality again to the second and third terms on the right-hand side of the inequality in (3.3) gives

$$\text{rank } B_i^{s-1} A_{i-1,1} + \text{rank } B_i^{s-1} A_{i+1,i+2} + \text{rank } B_i^{s-1} A_{i+2,i+3} + \cdots$$

Continuing in this manner gives

$$\text{rank } A^{k_s-k+1} \leq \text{rank } B_i^{s-1} + \text{rank } B_i^{s-1} + \cdots + \text{rank } B_i^{s-1} + \text{rank } A_i B_i^{s-1} A_{i-1,1}.$$
Using Lemma 2.2, the last term on the righthand side of the inequality in (3.5) becomes
\[
\text{rank } B_i^{s-1} A_{i-1} A_{i-1} = \text{rank } B_i^{s-1} B_i = \text{rank } B_i^{s-1},
\]
since index $B_i = s$. Thus,
\[
\text{rank } A^{k_s-k+1} < \text{rank } B_i^{s-1} + \text{rank } B_i^{s-1} + \cdots \text{rank } B_i^{s-1} + \text{rank } B_i^{s-1} + \cdots
\]
\[
= \text{rank } A^{k(s-1)} = \text{rank } A^{k_s-k},
\]
where the equality follows from (3.1).

Theorem 3.3. Let A be as in (1.1) with associated matrices B_i defined in (2.1). Then, the following statements hold.

(i) If index $B_i = 0$ for all $i = 1, \ldots, k$, then A is nonsingular and index $A = 0$.

(ii) If index $B_i = s_i \geq 1$ for some $i \in \{1, \ldots, k\}$, then index $A \geq k_s - k + 1$.

Proof. The first statement follows immediately from (2.3) and (3.1). For the second statement, let index $B_i = s_i \geq 1$ for some $i \in \{1, \ldots, k\}$. Then $\text{rank } A^{k_s-k+1} < \text{rank } A^{k_s-k}$, by Lemma 3.2. From the strict inequality, index $A \geq k_s - k + 1$.

The next result follows immediately from Theorem 3.3(ii).

Corollary 3.4. Let A be as in (1.1) with associated matrices B_i defined in (2.1). If index $A \leq 1$, then index $B_i \leq 1$ for all $i = 1, \ldots, k$. That is, if the group inverse $A^\#$ exists, then the group inverses $B_i^\#$ exist for all $i = 1, \ldots, k$.

Note however that the converse to Corollary 3.4 is false (see, e.g., [4, Example 4.3]).

Remark 3.5. If A of the form (1.1) is nonnegative and all matrices with the same $+, 0$ sign pattern as A that have index 1 have at least one $B_i^\#$ nonnegative, then these group inverses are nonnegative (Corollary 2.5) and A is conditionally S^2GI in the notation of Zhou et al. [15].

Corollary 3.6. Let A be as in (1.1) with associated matrices B_i defined in (2.1), and let $s = \min_{1 \leq i \leq k} \text{index } B_i$ and $s' = \max_{1 \leq i \leq k} \text{index } B_i > 0$. Then $k s' - k + 1 \leq \text{index } A \leq k s + k - 1$. If $s' = 0$, then index $A = 0$.

Corollary 3.6 leads to a result about the indices of B_i that is of independent interest.

Theorem 3.7. Let A be as in (1.1) with associated matrices B_i defined in (2.1), and let $s_\ell = \text{index } B_\ell$ for $\ell \in \{1, \ldots, k\}$. Then $|s_i - s_j| \leq 1$ for all $i, j \in \{1, \ldots, k\}$.
Proof. Let \(s = \min_{1 \leq i \leq k} \text{index } B_i \) and \(s' = \max_{1 \leq i \leq k} \text{index } B_i \), and suppose that \(s' = s + t \) where \(t \geq 0 \). By Corollary 3.6

\[
k(s + t) - k + 1 \leq \text{index } A \leq ks + k - 1.
\]

It follows that

\[
k(s + t) - k + 1 \leq ks + k - 1,
\]

or equivalently,

\[
k(t - 2) + 2 \leq 0.
\]

As \(k \geq 2 \), the inequality above is possible only if \(t \leq 1 \). Thus, \(s' - s = t \leq 1 \) and \(|\text{index } B_i - \text{index } B_j| \leq 1 \) for all \(i, j \).

The next result gives tight bounds on \(\text{index } A \) in terms of the minimum index of the block products \(B_i \). The proof is immediate from Corollary 3.6 and Theorem 3.7.

Theorem 3.8. Let \(A \) be as in (1.1) with associated matrices \(B_i \) defined in (2.1), and let \(s = \min_{1 \leq i \leq k} \text{index } B_i \). Then, exactly one of the following holds:

(i) \(\text{index } B_i = s \) for all \(i = 1, \ldots, k \), or

(ii) \(\text{index } B_i = s + 1 \) for some \(i = 1, \ldots, k \).

If (i) holds, then \(ks - k + 1 \leq \text{index } A \leq ks + k - 1 \). If (ii) holds, then \(ks + 1 \leq \text{index } A \leq ks + k - 1 \).

The above result generalizes bounds found in [4, Section 3] and shows that if \(k = 2 \) and (ii) holds, then \(\text{index } A = 2s + 1 \).

We now give examples that illustrate Theorem 3.8.

Example 3.9. Let \(A \) be the matrix in Example 2.6. Using the notation in Theorem 3.8, \(s = 0 = \text{index } B_1 = \text{index } B_3 \) and \(\text{index } B_2 = 1 = s + 1 \). Applying the result with \(k = 3 \) gives the bounds \(1 \leq \text{index } A \leq 2 \). Since \(\text{rank } A = \text{rank } A^2 \), \(\text{index } A = 1 = ks + 1 \), which is the lower bound of Theorem 3.8 case (ii).

Example 3.10. Let

\[
A = \begin{bmatrix}
0 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & -1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & A_{12} & 0 \\
0 & 0 & A_{23} \\
A_{31} & 0 & 0
\end{bmatrix}.
\]
Then $B_1 = 3, B_2 = \begin{bmatrix} 3 & -3 \\ 0 & 0 \end{bmatrix}$ and $B_3 = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$. Note that index $B_1 = 0$ and $B_1^{-1} = \frac{1}{3}$. Using Theorem 2.4, $A^D = \begin{bmatrix} 0 & 0 & 0 & \frac{1}{3} & \frac{2}{3} \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{3} & -\frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{3} & -\frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{3} & -\frac{1}{3} & 0 & 0 \end{bmatrix}$.

Using the notation in Theorem 3.8, $s = 0 = \text{index } B_1$ and index $B_2 = \text{index } B_3 = 1 = s + 1$. Applying the theorem with $k = 3$ gives the bounds $1 \leq \text{index } A \leq 2$. It can be computed that index $A = 2 = ks + k - 1$, which is the upper bound of Theorem 3.8 case (ii).

Example 3.11. Let

$$A = \begin{bmatrix} 0 & B & 0 & \cdots & 0 \\ 0 & 0 & I & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & I \\ I & 0 & 0 & \cdots & 0 \end{bmatrix},$$

where B is a square matrix and I is an identity matrix of the same order as B. Note that $B_i = B$ for all i. Suppose that index $B = s$. Then index $A = ks$, the midpoint of the interval $[ks - k + 1, ks + k - 1]$ in Theorem 3.8 case (i), and from Theorem 2.4

$$A^D = \begin{bmatrix} 0 & 0 & \cdots & 0 & B^D B \\ B^D & 0 & \cdots & 0 & 0 \\ 0 & B^D B & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & B^D B & 0 \end{bmatrix}.$$
EXAMPLE 3.12. Let

\[
A = \begin{bmatrix}
0 & F & 0 & \cdots & 0 \\
0 & 0 & F & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & F \\
F & 0 & 0 & \cdots & 0
\end{bmatrix},
\]

where \(F\) is a square matrix. Then index \(A = \text{index } F\) and \(B_i = F^k\) for \(i = 1, \ldots, k\). Setting index \(A = \ell\) and index \(B_i = s\) gives \(s = \left\lceil \frac{\ell}{k} \right\rceil\). Thus, index \(A\) can take any value in the interval \([k s - k + 1, k s]\), which is half the range given in Theorem 3.8 case (i).

Examples 3.11 and 3.12 have \(B_i\), and thus index \(B_i\), the same for all \(i\). The following result determines index \(A\) in this case, and the necessary and sufficient conditions reduce to the result of [3] Theorem 3.5] for \(k = 2\).

THEOREM 3.13. Let \(A\) be a block \(k\)-cyclic matrix of the form in (1.3) with associated matrices \(B_i\) defined in (2.1), and suppose that \(s = \min \text{index } B_i \geq 1\). Then index \(A = k s\) if and only if

(i) index \(B_i = s\) for all \(i = 1, \ldots, k\), and

(ii) rank \(B_j^* < \text{rank } B_j^{s-1} A_{j-1} \) for some \(j \in \{1, \ldots, k\}\).

If (i) holds, then rank \(B_i^* = \text{rank } B_j^*\) for all \(i, j = 1, \ldots, k\). If (i) holds but (ii) does not hold, then index \(A < k s\).

Proof. Suppose that index \(A = k s\). Then rank \(A^{k s} < \text{rank } A^{k s-1}\). It follows, using (2.3), (2.5) and (6.1), that \(\sum_{i=1}^k \text{rank } B_i^* < \sum_{i=1}^k \text{rank } B_i^{s-1} A_{i-1} A_i\). Thus, rank \(B_j^* < \text{rank } B_j^{s-1} A_{j-1} A_j\) for some \(j \in \{1, \ldots, k\}\), hence (ii) holds. Suppose on the contrary that (i) does not hold. Then, for some \(j \in \{1, \ldots, k\}\), index \(B_j = s + 1\) (by Theorem 3.8). Thus, rank \(B_j^* > \text{rank } B_j^{s+1}\), hence by (2.3) rank \(A^{k s} = \sum_{i=1}^k \text{rank } B_i^* > \sum_{i=1}^k \text{rank } B_i^{s+1} = \text{rank } A^{k(s+1)}\). This implies that rank \(A^{k s} < \text{rank } A^{k s + k}\), so index \(A > k s\), a contradiction. Hence, (i) and (ii) must hold.

For the reverse implication, suppose that (i) and (ii) hold. Then rank \(A^{k s} = \sum_{i=1}^k \text{rank } B_i^* < \sum_{i=1}^k \text{rank } B_i^{s-1} A_{i-1} A_i = \text{rank } A^{k(s-1) + (k-1)} = \text{rank } A^{k s-1}\), where the strict inequality is due to (ii). Thus, index \(A \geq k s\). Note that since rank \(B_i^* \geq \text{rank } B_i^{s+1} A_{i-1} A_i \geq \text{rank } B_i^{s+1}\) and rank \(B_i^* A_{i-1} A_i = \text{rank } A_{i-1} B_i^{s+1}\) (by Lemma 2.2), it follows using (i) that rank \(B_i^{s+1} = \text{rank } B_i^* = \text{rank } B_i^{s+1} A_{i-1} A_i = \text{rank } A_{i-1} B_i^{s+1} = \text{rank } B_i^{s+1}\) for all \(i, j\). Thus, rank \(A^{k s} = \sum_{i=1}^k \text{rank } B_i^* = \sum_{i=1}^k \text{rank } B_i^{s+1} = \text{rank } A^{k s+1}\), using (3.1) and (3.2). Hence, rank \(A^{k s} = \text{rank } A^{k s+1}\), and so index \(A \leq k s\). This
proves that index $A = ks$. The last two statements of the theorem follow from the proof above.

The result of Theorem 3.13 is illustrated by Example 3.11 since rank $B^s_2 < \text{rank } B_2^s A_2^{-1} = \text{rank } B_2^s A$, it follows that rank $A = ks$. Example 3.12 also illustrates Theorem 3.13 since rank $A^{ks} = \text{rank } A^{k(s+1)}$ and rank $F^{ks} < \text{rank } F^{k(s-1)} F^{k-1} = \text{rank } F^{ks-1}$ if and only if index $F = \text{index } A = ks$; otherwise index $A < ks$.

Acknowledgement. The research of PvdD was supported in part by an NSERC Discovery grant. The authors thank D.D. Olesky for helpful discussions.

REFERENCES