2016

A note on a conjecture for the distance Laplacian matrix

Celso Marques da Silva Junior
Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, celsomjr@gmail.com

Maria Aguiéiras Alvarez de Freitas
Universidade Federal do Rio de Janeiro, maguiéiras@im.ufrj.br

Renata Raposo Del-Vecchio
Universidade Federal Fluminense, renata@vm.uff.br

Follow this and additional works at: https://repository.uwyo.edu/ela

Part of the [Discrete Mathematics and Combinatorics Commons](https://repository.uwyo.edu/ela)

Recommended Citation

DOI: https://doi.org/10.13001/1081-3810.3002
A NOTE ON A CONJECTURE FOR THE DISTANCE LAPLACIAN MATRIX

CELSO M. DA SILVA JR., MARIA AGUIEIRAS A. DE FREITAS, AND RENATA R. DEL-VECCHIO

Abstract. In this note, the graphs of order n having the largest distance Laplacian eigenvalue of multiplicity $n-2$ are characterized. In particular, it is shown that if the largest eigenvalue of the distance Laplacian matrix of a connected graph G of order n has multiplicity $n-2$, then $G \cong S_n$ or $G \cong K_{p,p}$, where $n = 2p$. This resolves a conjecture proposed by M. Aouchiche and P. Hansen in [M. Aouchiche and P. Hansen. A Laplacian for the distance matrix of a graph. Czechoslovak Mathematical Journal, 64(3):751–761, 2014.]. Moreover, it is proved that if G has P_5 as an induced subgraph then the multiplicity of the largest eigenvalue of the distance Laplacian matrix of G is less than $n-3$.

Key words. Distance Laplacian matrix, Laplacian matrix, Largest eigenvalue, Multiplicity of eigenvalues.

AMS subject classifications. 05C12, 05C50, 15A18.

1. Introduction. Let $G = (V, E)$ be a connected graph and the distance (the length of a shortest path) between vertices v_i and v_j of G be denoted by $d_{i,j}$. The distance matrix of G, denoted by $D(G)$, is the $n \times n$ matrix whose (i,j)-entry is equal to $d_{i,j}$, $i, j = 1, 2, \ldots, n$. The transmission $Tr(v_i)$ of a vertex v_i is defined as the sum of the distances from v_i to all other vertices in G. For more details about the distance matrix we suggest, for example, [5]. M. Aouchiche and P. Hansen [3] introduced the Laplacian for the distance matrix of a connected graph G as $D_L(G) = Tr(G) - D(G)$, where $Tr(G)$ is the diagonal matrix of vertex transmissions. We write $(\partial_{1}^{L}, \partial_{2}^{L}, \ldots, \partial_{n}^{L} = 0)$, for the distance Laplacian spectrum of a connected graph G, the D_L-spectrum, and assume that the eigenvalues are arranged in a nonincreasing order. The multiplicity of the eigenvalue ∂_{i}^{L} is denoted by $m(\partial_{i}^{L})$, for $1 \leq i \leq n$. We often use exponents to exhibit the multiplicity of the distance Laplacian eigenvalues when we write the D_L-spectrum. The distance Laplacian matrix has been recently...
studied ([2, 4, 6]) and, in [4], M. Aouchiche and P. Hansen proposed some conjectures about it. Among them, we consider in this work the following one:

Conjecture 1.1. [4] If G is a graph on $n \geq 3$ vertices and $G \not\cong K_n$, then $m(\partial L^1(G)) \leq n - 2$ with equality if and only if G is the star S_n or $n = 2p$ for the complete bipartite graph $K_{p,p}$.

In this paper, we prove the conjecture. In order to obtain this result we analyze how the existence of P_4 as an induced subgraph influences the D^L-spectrum of a connected graph. We conclude that, in this case, the largest distance Laplacian eigenvalue has multiplicity less than or equal to $n - 3$. This fact motivated us to also investigate the influence of an induced P_5 subgraph in the D^L-spectrum of a graph. We prove that if a graph has an induced P_5 subgraph then the largest eigenvalue of its distance Laplacian matrix has multiplicity at most $n - 4$. Although we do not make a general approach by characterizing the graphs that have the largest distance Laplacian eigenvalue with multiplicity $n - 3$, some considerations on this topic are made.

2. Preliminaries. In what follows, $G = (V, E)$, or just G, denotes a graph with n vertices and \overline{G} denotes its complement. The diameter of a connected graph G is denoted by $\text{diam}(G)$. As usual, we write, respectively, P_n, C_n, S_n and K_n, for the path, the cycle, the star and the complete graph, all with n vertices. We denote by $K_{p,p}$ and by $K_{p,p,p}$ the balanced complete bipartite and tripartite graph, respectively.

Now, we recall the definitions of some operations with graphs that will be used. For this, let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be vertex disjoint graphs:

- The **union** of G_1 and G_2 is the graph $G_1 \cup G_2$ (or $G_1 + G_2$), whose vertex set is $V_1 \cup V_2$ and whose edge set is $E_1 \cup E_2$;
- The **complete product** or **join** of graphs G_1 and G_2 is the graph $G_1 \vee G_2$ obtained from $G_1 \cup G_2$ by joining each vertex of G_1 with every vertex of G_2.

A graph G is a coGraph, also known as a decomposable graph, if no induced subgraph of G is isomorphic to P_4 [1]. About the coGraphs, we also have the following characterizations:

Theorem 2.1. [1] *Given a graph G, the following statements are equivalent:*

- G is a coGraph.
- The complement of any connected subgraph of G with at least two vertices is disconnected.
- Every connected subgraph of G has diameter less than or equal to 2.

We denote by $(\mu_1, \mu_2, \ldots, \mu_n = 0)$ the L-spectrum of G, i.e., the spectrum of the Laplacian matrix of G, and assume that the eigenvalues are labeled such that
\(\mu_1 \geq \mu_2 \geq \cdots \geq \mu_n = 0 \). It is well known that the multiplicity of the Laplacian eigenvalue 0 is equal to the number of components of \(G \) and that \(\mu_{n-1}(G) = n - \mu_i(G) \), \(\forall 1 \leq i \leq n-1 \) (see [8] for more details).

The following results regarding the distance Laplacian matrix are already known.

Theorem 2.2. [3] Let \(G \) be a connected graph on \(n \) vertices with \(\text{diam}(G) \leq 2 \). Let \(\mu_1 \geq \mu_2 \geq \cdots \geq \mu_{n-1} > \mu_n = 0 \) be the Laplacian spectrum of \(G \). Then the distance Laplacian spectrum of \(G \) is \(2n - \mu_{n-1} \geq 2n - \mu_{n-2} \geq \cdots \geq 2n - \mu_1 \geq \partial_{L^D}^n = 0 \). Moreover, for every \(i \in \{1, 2, \ldots, n-1\} \) the eigenspaces corresponding to \(\mu_i \) and to \(2n - \mu_1 \) are the same.

Theorem 2.3. [3] Let \(G \) be a connected graph on \(n \) vertices. Then \(\partial_{L^D}^{n-1} = n \) if and only if \(\overline{G} \) is disconnected. Moreover, the multiplicity of \(n \) as an eigenvalue of \(\mathcal{D}^L \) is one less than the number of components of \(\overline{G} \).

Theorem 2.4. [3] If \(G \) is a connected graph on \(\geq 2 \) vertices then \(m(\partial_{L^D}^i) \leq n-1 \) with equality if and only if \(G \) is the complete graph \(K_n \).

We finish this section enunciating the Cauchy interlacing theorem, that will be necessary for what follows:

Theorem 2.5. [7] Let \(A \) be a real symmetric matrix of order \(n \) with eigenvalues \(\lambda_1(A) \geq \lambda_2(A) \geq \cdots \geq \lambda_n(A) \) and let \(M \) be a principal submatrix of \(A \) with order \(m \leq n \) and eigenvalues \(\lambda_1(M) \geq \lambda_2(M) \geq \cdots \geq \lambda_m(M) \). Then \(\lambda_i(A) \geq \lambda_i(M) \geq \lambda_{i+n-m}(A) \), for all \(1 \leq i \leq m \).

3. Proof of the conjecture

The next lemmas will be useful to prove the main results of this section:

Lemma 3.1. If \(G \) is a connected graph on \(\geq 2 \) vertices and Laplacian spectrum equal to \((n, \mu_2, \ldots, \mu_2, \mu_2, 0)\), with \(\mu_2 \neq n \), then \(G \cong S_n \) or \(G \cong K_{p,p} \), where \(n = 2p \).

Proof. In this case, the \(L \)-spectrum of \(\overline{G} \) is \((n - \mu_2, n - \mu_2, \ldots, n - \mu_2, 0, 0)\) and, then, \(\overline{G} \) has exactly 2 components. As each component has no more than two distinct Laplacian eigenvalues, both are isolated vertices or complete graphs. Since the components also have all nonzero eigenvalues equal, we have \(\overline{G} \cong K_1 \cup K_{n-1} \) or \(\overline{G} \cong K_p \cup K_p \), where \(n = 2p \). Therefore, \(G \cong S_n \) or \(G \cong K_{p,p} \). On the other hand, it is already known that the \(L \)-spectrum of \(S_n \) and \(K_{p,p} \) are, respectively, \((n, 1, \ldots, 1, 0)\) and \((n, p, \ldots, p, 0)\). \(\square \)

Lemma 3.2. Let \(A \) be a real symmetric matrix of order \(n \) with largest eigenvalue \(\lambda \) and \(M \) the \(m \times m \) principal submatrix of \(A \) obtained from \(A \) by excluding the \(n - m \) last rows and columns. If \(M \) also has \(\lambda \) as an eigenvalue, associated with the normalized eigenvector \(\mathbf{x} = (x_1, \ldots, x_m) \), then \(\mathbf{x}^* = (x_1, \ldots, x_m, 0, \ldots, 0) \) is a
corresponding eigenvector to \(\lambda \) in \(A \).

Proof. As \(\lambda \) is an eigenvalue of \(M \) corresponding to \(x \), then \(\lambda = \langle Mx, x \rangle \). So, it is enough to see that \(\langle Mx, x \rangle = \langle Ax^*, x^* \rangle \). \(\Box \)

A well known result about the Laplacian matrix ([8]) says that, if \(G \) is a graph with at least one edge then \(\mu_1 \geq \Delta + 1 \), where \(\Delta \) denotes the maximum degree of \(G \). It is possible to get an analogous lower bound for the largest distance Laplacian eigenvalue of a connected graph \(G \):

Theorem 3.3. If \(G \) is a connected graph then \(\partial^L_1(G) \geq \max_{i \in V} \text{Tr}(v_i) + 1 \). Equality is attained if and only if \(G \cong K_n \).

Proof. Suppose, without loss of generality, that \(\text{Tr}(v_1) = \max_{i \in V} \text{Tr}(v_i) = \text{Tr}_{\text{max}} \) and let \(x = \left(\frac{1}{n-1}, \frac{1}{n-1}, \ldots, \frac{1}{n-1} \right) \). Then

\[
\partial^L_1(G) = \max_{y \neq 0} \frac{\langle D^L y, y \rangle}{\|y\|^2} \geq \frac{\langle D^L x, x \rangle}{\|x\|^2} = \left(1 + \frac{1}{n-1} \right)^2 \left(\frac{\sum_{i=1}^n d_{i,i}}{\|x\|^2} \right) = \frac{n^2 \text{Tr}_{\text{max}}}{(n-1)^2 \|x\|^2}.
\]

Since, \(\|x\|^2 = \frac{n}{n-1} \), we obtain

\[
\partial^L_1(G) \geq \frac{n}{n-1} \text{Tr}_{\text{max}} = \frac{\text{Tr}_{\text{max}}}{n-1} \geq \text{Tr}_{\text{max}} + 1.
\]

(3.1)

If the equality is attained for a connected graph \(G \) then, from (3.1), we conclude that \(\text{Tr}_{\text{max}} = n - 1 \). As \(G \cong K_n \) is the unique graph with this property and \(\partial^L_1(K_n) = n \), the result is proven. \(\Box \)

In order to solve Conjecture 1.1, we first investigate how the existence of \(P_4 \) as an induced subgraph influences the multiplicity of the largest eigenvalue of the distance Laplacian matrix of a graph:

Theorem 3.4. If the connected graph \(G \) has at least 4 vertices and it is not a cograph then \(m(\partial^L_1) \leq n - 3 \).

Proof. Let \(G \) be a connected graph on \(n \geq 4 \) vertices which is not a cograph. Then \(G \) has \(P_4 \) as an induced subgraph. Let \(M \) be the principal submatrix of \(D^L(G) \) associated with this induced subgraph and denote the eigenvalues of \(M \) by \(\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \lambda_4 \). Suppose that \(m(\partial^L_1) \geq n - 2 \). By Cauchy interlacing (Theorem 2.5) is easy to check that \(\lambda_1 = \lambda_2 = \partial^L_1 \). By Lemma 3.2, if \(x = (x_1, x_2, x_3, x_4) \) and \(y = (y_1, y_2, y_3, y_4) \) are eigenvectors associated to \(\partial^L_1 \) in \(M \), then \(x^* = (x_1, x_2, x_3, x_4, 0, \ldots, 0) \) and \(y^* = (y_1, y_2, y_3, y_4, 0, \ldots, 0) \) are eigenvectors associated to \(\partial^L_1 \) in \(D^L(G) \). As \(x^*, y^* \perp 1 \), with a linear combination of this vectors, is possible to get \(z^* = (z_1, z_2, 0, z_4, 0, \ldots, 0) \)
such that $z^* \perp 1$ and it is still an eigenvector for $\mathcal{D}^L(G)$ associated to ∂_2^L. Thus, $z = (z_1, z_2, 0, z_4)$ is an eigenvector for M such that $z_1 + z_2 + z_4 = 0$.

Now, we observe that there are just two options for the matrix M:

$$M_1 = \begin{bmatrix} t_1 & -1 & -2 & -3 \\ -1 & t_2 & -1 & -2 \\ -2 & -1 & t_3 & -1 \\ -3 & -2 & -1 & t_4 \end{bmatrix} \quad \text{or} \quad M_2 = \begin{bmatrix} t_1 & -1 & -2 & -2 \\ -1 & t_2 & -1 & -2 \\ -2 & -1 & t_3 & -1 \\ -2 & -2 & -1 & t_4 \end{bmatrix},$$

where t_1, t_2, t_3, t_4 denote the transmissions of the vertices that induce P_4 in $\mathcal{D}^L(G)$.

From the third entry of $M_1 z = \lambda_1 z$ it follows that $-2z_1 - z_2 - z_4 = 0$. This, together with the fact that $z_1 + z_2 + z_4 = 0$, allow us to conclude that $(0, 1, 0, -1)$ is an eigenvector corresponding to ∂_1^L in M_1. From the first entry of $M_1 z = \lambda_1 z$, we have a contradiction. Similarly we have a contradiction, considering M_2 instead of M_1. \qed

The next theorem resolves the Conjecture 1.1:

Theorem 3.5. If G is a graph on $n \geq 3$ vertices and $G \not\cong K_n$, then $m(\partial_1^L(G)) \leq n - 2$ with equality if and only if G is the star S_n or the complete bipartite graph $K_{p,p}$, if $n = 2p$.

Proof. As $G \not\cong K_n$, we already know that $m(\partial_1^L(G)) \leq n - 2$ (Theorem 2.4). Therefore, it remains to check for which graphs we have $m(\partial_1^L(G)) = n - 2$. Let G be a connected graph satisfying this property. Thus, $m(\partial_{n-1}^L(G)) = 1$. We consider two cases, when $\partial_{n-1}^L(G) = n$ and when $\partial_{n-1}^L(G) \neq n$:

- If $\partial_{n-1}^L(G) = n$, the \mathcal{D}^L-spectrum of G is $(\partial_1^L, \partial_1^L, \ldots, \partial_1^L, n, 0)$, with $\partial_1^L(G) \neq n$. By Theorem 2.3, G is disconnected and has exactly two components. Furthermore, as G is connected and G is disconnected, $\text{diam}(G) \leq 2$. So, by Theorem 2.2, the L-spectrum of G is $(n, 2n - \partial_1^L, \ldots, 2n - \partial_1^L, 2n - \partial_1^L, 0)$ and, from Lemma 3.1, $G \cong S_n$ or $G \cong K_{p,p}$;

- If $\partial_{n-1}^L(G) \neq n$, the \mathcal{D}^L-spectrum of G is $(\partial_1^L, \partial_1^L, \ldots, \partial_1^L, \partial_{n-1}^L, 0)$ with $\partial_1^L \neq \partial_{n-1}^L$ and $\partial_{n-1}^L \neq n$. We claim there is no graph with this property. Indeed, by Theorem 2.3, as $\partial_{n-1}^L \neq n$, \overline{G} is also connected. By Theorem 2.1, G has P_4 as an induced subgraph and, therefore, by Theorem 3.4, G cannot have a distance Laplacian eigenvalue with multiplicity $n - 2$.

It is already known [4] the \mathcal{D}^L-spectra of the star and the complete bipartite graph, and this complete the proof:

- \mathcal{D}^L-spectrum of S_n : $((2n - 1)^{(n-2)}, n, 0)$;
- \mathcal{D}^L-spectrum of $K_{p,p}$: $((3p)^{(n-2)}, n, 0)$. \qed
4. Graphs with P_5 as forbidden subgraph. In the previous section, we established a relationship between the D^L-spectrum of a connected graph and the existence of a P_4 induced subgraph. Then, it is natural to think how the existence of a P_5 induced subgraph could influence its D^L-spectrum. In this case, we prove the following theorem, regarding the largest distance Laplacian eigenvalue:

Theorem 4.1. If G is a connected graph on $n \geq 5$ vertices and $m(\partial^L_1(G)) = n - 3$ then G does not have a P_5 as induced subgraph.

Proof. Suppose that G has a P_5 as an induced subgraph and let M be the principal submatrix of $D^L(G)$ corresponding to the vertices in this P_5. Denote the eigenvalues of M by $\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \lambda_4 \geq \lambda_5$. If $m(\partial^L_1) = n - 3$, by Cauchy interlacing theorem it follows that $\lambda_1 = \lambda_2 = \partial^L_1$. By Lemma 3.2, if $x = (x_1, x_2, x_3, x_4, x_5)$ and $y = (y_1, y_2, y_3, y_4, y_5)$ are eigenvectors associated to ∂^L_1 for M, then $x^* = (x_1, x_2, x_3, x_4, x_5, 0, \ldots, 0)$ and $y^* = (y_1, y_2, y_3, y_4, y_5, 0, \ldots, 0)$ are eigenvectors for $D^L(G)$, associated to ∂^L_1. As $x^*, y^* \perp 1$, with a linear combination of this vectors, is possible to get $z^* = (z_1, z_2, z_3, z_4, 0, \ldots, 0)$ such that $z^* \perp 1$, and it is still an eigenvector for $D^L(G)$ associated to ∂^L_1. Then, $z = (z_1, z_2, z_3, z_4, 0)$ is an eigenvector for M such that $z_1 + z_2 + z_3 + z_4 = 0$.

Now, we observe that the matrix M can be written as

$$
M = \begin{bmatrix}
t_1 & -1 & -2 & -d_{1,4} & -d_{1,5} \\
-1 & t_2 & -1 & -2 & -d_{2,5} \\
-2 & -1 & t_3 & -1 & -2 \\
-d_{1,4} & -2 & -1 & t_4 & -1 \\
-d_{5,1} & d_{5,2} & -2 & -1 & t_5
\end{bmatrix},
$$

(4.1)

where t_1, t_2, t_3, t_4, t_5 denote the transmissions of the vertices that induce P_5 in $D^L(G)$, $d_{1,5} = 2, 3$ or 4, $d_{2,5} = 2$ or 3 and $d_{1,4} = 2$ or 3. As P_5 is an induced subgraph, it is easy to check that if $d_{1,4} = 4$ then $d_{2,5} = 3$ and $d_{1,4} = 3$. Considering the following cases, we see that all possibilities lead to a contradiction:

- $d_{1,5} = 2$ and $d_{2,5} = 2$.

As $z \perp 1$, from the fifth entry of $Mz = \partial^L_1z$, it follows that $z_4 = 0$. So, using also the fourth entry of this equation, we have

$$
\begin{cases}
-d_{1,4}z_1 - 2z_2 - z_3 = 0, \\
z_1 + z_2 + z_3 = 0.
\end{cases}
$$

If $d_{1,4} = 2$, then $z_3 = 0$ and $z_1 = -z_2$. So, we can assume that $z = (-1, 1, 0, 0, 0)$ is an eigenvector of M, which is a contradiction according to the third entry of the equation. If $d_{1,4} = 3$, then $z_3 = z_1$ and $z_2 = -2z_1$. So, we can assume that $z = (1, -2, 1, 0, 0)$ is an eigenvector of M. From the third
entry of the equation, we conclude that $t_3 = \partial^L_1$, which is a contradiction (Theorem 3.3).

- $d_{1,5} = 2$ and $d_{2,5} = 3$:
 As $\mathbf{z} \perp \mathbf{1}$, from the fifth entry of $M \mathbf{z} = \partial^L_1 \mathbf{z}$, it follows that $z_2 = z_4 = 1$ and $z_1 + z_3 = -2$. So, we can consider $\mathbf{z} = (z_1, 1, -2 - z_1, 1, 0)$, and from the second entry of the same equation, we conclude that $t_2 = \partial^L_1$.

- If $d_{1,5} = 3$ and $d_{2,5} = 2$:
 As $\mathbf{z} \perp \mathbf{1}$, from the fifth entry of $M \mathbf{z} = \partial^L_1 \mathbf{z}$, it follows that $z_1 = z_4 = 1$ and $z_2 + z_3 = -2$. So, we can consider $\mathbf{z} = (1, -2 - z_3, z_3, 1, 0)$, and we have
 \[
 \begin{align*}
 t_1 + 2 - z_3 - d_{1,4} & = \partial^L_1, \\
 -d_{1,4} + 4 + z_3 + t_4 & = \partial^L_1.
 \end{align*}
 \]

 If $d_{1,4} = 2$, by Theorem 3.3 we have
 \[
 \begin{align*}
 z_3 & = t_1 - \partial^L_1 \leq -1, \\
 z_3 & = \partial^L_1 - t_4 \geq 1.
 \end{align*}
 \]

 If $d_{1,4} = 3$, again by Theorem 3.3, we have
 \[
 \begin{align*}
 z_3 & = t_1 - \partial^L_1 - 1 \leq -2, \\
 z_3 & = \partial^L_1 - t_4 - 1 \geq 0.
 \end{align*}
 \]

- If $d_{1,5} = d_{2,5} = 3$:
 As $\mathbf{z} \perp \mathbf{1}$, from the fifth entry of $M \mathbf{z} = \partial^L_1 \mathbf{z}$, it follows that $z_3 = -2z_4$ and $z_1 + z_2 = 1$. So, we can consider $\mathbf{z} = (z_1, 1 - z_1, -2 + 1, 0)$, and we have
 \[
 \begin{align*}
 -z_1 - 2t_3 - 2 & = -2\partial^L_1, \\
 (2 - d_{1,4})z_1 + t_4 & = \partial^L_1.
 \end{align*}
 \]

 If $d_{1,4} = 2$, then $t_4 = \partial^L_1$, which is a contradiction. If $d_{1,4} = 3$, then
 \[
 \begin{align*}
 z_1 & = 2(\partial^L_1 - t_3 - 1), \\
 z_1 & = t_4 - \partial^L_1,
 \end{align*}
 \]
 which is a contradiction, since Theorem 3.3 implies $z_1 < 0$ and $z_1 > 0$.

- $d_{1,5} = 4$, $d_{2,5} = 3$ and $d_{1,4} = 3$:
 As $\mathbf{z} \perp \mathbf{1}$, from the fifth entry of $M \mathbf{z} = \partial^L_1 \mathbf{z}$, it follows that $-3z_1 - 2z_2 - z_3 = 0$.
 From this fact and the fourth entry of this equation, we obtain $t_4z_4 = z_4\partial^L_1$.
 If $z_4 \neq 0$, we get a contradiction. If $z_4 = 0$, we conclude that $-2z_1 - z_2 = 0$. So, we can consider $\mathbf{z} = (1, -2, 1, 0, 0)$, which implies in $t_1 = \partial^L_1$, a contradiction. ☐
A Note on a Conjecture for the Distance Laplacian Matrix

Although by this theorem we cannot completely describe the graphs that have largest distance Laplacian eigenvalue with multiplicity \(n - 3 \), it is possible to obtain a partial characterization and some remarks about this issue.

Proposition 4.2. Let \(G \) be a connected graph with order \(n \geq 4 \) such that \(m(\partial_L) = n - 3 \). If \(\partial_{n-1}^L = n \) is an eigenvalue with multiplicity 2 then \(G \cong K_{\frac{n}{2}, \frac{n}{2}}, \) or \(G \cong K_{\frac{n}{2}, \frac{n}{2}} \cup K_1, \) or \(G \cong K_{n-2} \cup K_2. \)

Proof. As \(\partial_{n-1}^L = n \) is disconnected and \(\text{diam}(G) = 2. \) Moreover, by Theorem 2.2, the \(L \)-spectrum of \(\overline{G} \) is

\[
(n - \partial_1^L, \ldots, n - \partial_1^L, 0, 0, 0),
\]

that is, \(\overline{G} \) has three components, all of them with the same nonzero eigenvalue. So, the three components are isolated vertices or complete graphs with the same order, that is, \(\overline{G} \cong K_{\frac{n}{3}} \cup K_{\frac{n}{3}} \cup K_{\frac{n}{3}}, \) if \(3 \mid n, \) \(\overline{G} \cong K_{\frac{n}{2}, \frac{n}{2}} \cup K_{\frac{n}{2}, \frac{n}{2}} \cup K_1, \) if \(2 \mid (n - 1), \) or \(\overline{G} \cong K_{n-2} \cup K_1 \cup K_1. \)

Finally, as the graphs we have cited above have diameter 2, by Theorem 2.2, its known to each its \(L \)-spectrum to write the \(D_L \)-spectrum:

- \(D_L \)-spectrum of \(K_{\frac{n}{3}, \frac{n}{3}, \frac{n}{3}} : \left(\left(\frac{4n}{3} \right)^{(n-3), (n^2), 0} \right); \)
- \(D_L \)-spectrum of \(K_{\frac{n}{2}, \frac{n}{2}} \cup K_1 : \left(\left(\frac{3n - 1}{2} \right)^{(n-3), (n^2), 0} \right); \)
- \(D_L \)-spectrum of \(K_{n-2} \cup K_2 : \left(\left(2(n - 1) \right)^{(n-3), (n^2), 0} \right). \)

To finish the characterization of the graphs whose largest eigenvalue of the distance Laplacian matrix has multiplicity \(n - 3 \) we should analyze two situations:

- If \(\partial_{n-1}^L = n \) is an eigenvalue with multiplicity one;
- If \(\partial_{n-1}^L \neq n. \)

Although we have not characterized precisely these two cases, proceeding similarly to the last proposition, we can conclude in the first case that if the \(D_L \)-spectrum of a connected graph \(G \) is \(\left(\partial_1^L, \ldots, \partial_1^L, \partial_{n-2}^L, n, 0 \right) \) then the \(L \)-spectrum of \(\overline{G} \) is written as \((\partial_1^L - n, \ldots, \partial_1^L - n, \partial_{n-2}^L - n, 0, 0). \) So, \(\overline{G} \) is a graph with 2 components such that the largest Laplacian eigenvalue has multiplicity \(n - 3. \) For example, the graph \(G \cong K_{2, n-2} \) has this property since the \(D_L \)-spectrum is equal to \((2n - 2)^{(n-3), n + 2, n, 0}. \)

In the last case, as \(\partial_{n-1}^L \neq n, \) then \(\overline{G} \) is a connected graph. So, \(G \) has \(P_4 \) as an induced subgraph. On the other hand, from Theorem 4.1, \(G \) does not have \(P_5 \) as an induced subgraph. For example, \(C_5 \) satisfies this condition, since its \(D_L \)-spectrum is \(\left(\frac{15 + \sqrt{5}}{2}, \frac{15 + \sqrt{5}}{2}, \frac{15 - \sqrt{5}}{2}, \frac{15 - \sqrt{5}}{2}, 0 \right). \)
Acknowledgment. The authors are very grateful to Vladimir Nikiforov for the remarks and suggestions.

REFERENCES

