A counterexample to a question of Bapat and Sunder

Stephen W. Drury
Department of Mathematics & Statistics, McGill University, Montreal, drury@math.mcgill.ca

Follow this and additional works at: https://repository.uwyo.edu/ela

Part of the Algebra Commons, and the Analysis Commons

Recommended Citation
DOI: https://doi.org/10.13001/1081-3810.3178
A COUNTEREXAMPLE TO A QUESTION OF BAPAT AND SUNDER*

STEPHEN W. DRURY†

Abstract. A counterexample to a question of Bapat and Sunder is presented.

Key words. Permanent, Hadamard product, Oppenheim’s inequality.

AMS subject classifications. 15A15.

1. Introduction. In [1], Bapat and Sunder raise the question of whether the inequality
\[\text{per}(A \circ B) \leq \text{per}(A) \prod_{j=1}^{n} b_{jj} \]
holds for positive semidefinite \(n \times n \) matrices \(A \) and \(B \). The quantity \(\text{per}(A) \) denotes the permanent of \(A \) and the notation \(A \circ B \) is for the Hadamard (entrywise) product of \(A \) and \(B \). This is the permanental version of Oppenheim’s inequality. It is the objective of this article to provide a counterexample. The question is related to two other questions:

- The permanent on top conjecture, recently disproved by Shchegel’nov [4] which would have implied [1] had it been true.
- The inequality \(\text{per}(A \circ B) \leq \text{per}(A)\text{per}(B) \) introduced by Chollet [2] and established in the case \(n = 3 \) by Gregorac and Hentzel [3]. This inequality would be a consequence of [1] had it been true. Chollet’s conjecture remains open. For a relatively recent discussion of Chollet’s conjecture, the reader may consult Zhang [5].

2. The counterexample. With \(n = 7 \), we take
\[A = \begin{pmatrix}
1 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
0 & 1 & \cos \left(\frac{\pi}{8} \right) & -\cos \left(\frac{\pi}{8} \right) & \cos \left(\frac{\pi}{8} \right) & -\cos \left(\frac{\pi}{8} \right) & \cos \left(\frac{\pi}{8} \right) \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & \cos \left(\frac{\pi}{8} \right) & -\cos \left(\frac{\pi}{8} \right) & 1 & \cos \left(\frac{\pi}{8} \right) & -\cos \left(\frac{\pi}{8} \right) \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & -\cos \left(\frac{\pi}{8} \right) & \cos \left(\frac{\pi}{8} \right) & -\cos \left(\frac{\pi}{8} \right) & 1 & \cos \left(\frac{\pi}{8} \right) \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & \cos \left(\frac{\pi}{8} \right) & -\cos \left(\frac{\pi}{8} \right) & 1 & \cos \left(\frac{\pi}{8} \right) & -\cos \left(\frac{\pi}{8} \right) \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & -\cos \left(\frac{\pi}{8} \right) & \cos \left(\frac{\pi}{8} \right) & -\cos \left(\frac{\pi}{8} \right) & 1 & \cos \left(\frac{\pi}{8} \right) \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & \cos \left(\frac{\pi}{8} \right) & -\cos \left(\frac{\pi}{8} \right) & 1 & \cos \left(\frac{\pi}{8} \right) & -\cos \left(\frac{\pi}{8} \right)
\end{pmatrix} \]

*Received by the editors on November 30, 2015. Accepted for publication on January 26, 2016. Handling Editor: Ravi Bapat.

†Department of Mathematics and Statistics, McGill University, Montreal, Canada H3A 0B9 (drury@math.mcgill.ca).
and \(B = A^T \). Then it is easy to check that \(A \) and \(B \) are hermitian positive semidefinite matrices of rank two (with eigenvalue \(\frac{7}{2} \) of multiplicity two) and that

\[
\text{per}(A \circ B) = \frac{6185}{128},
\]

that \(\prod_{j=1}^7 b_{jj} = 1 \) and that \(\text{per}(A) = 45 \). We find that

\[
\frac{\text{per}(A \circ B)}{\text{per}(A) \prod_{j=1}^7 b_{jj}} = \frac{1237}{1152} > 1.
\]

REFERENCES