2017

Generalized left and right Weyl spectra of upper triangular operator matrices

Guojun Hai
3695946@163.com

Dragana S. Cvetkovic-Ilic
University of Nis, gagamaka@ptt.rs

Follow this and additional works at: http://repository.uwyo.edu/ela

Part of the Algebra Commons

Recommended Citation
DOI: https://doi.org/10.13001/1081-3810.3373

This Article is brought to you for free and open access by Wyoming Scholars Repository. It has been accepted for inclusion in Electronic Journal of Linear Algebra by an authorized editor of Wyoming Scholars Repository. For more information, please contact scholcom@uwyo.edu.
GENERALIZED LEFT AND RIGHT WEYL SPECTRA OF
UPPER TRIANGULAR OPERATOR MATRICES

GUOJUN HAI† AND DRAGANA S. CVETKOVIĆ-ILIČ‡

Abstract. In this paper, for given operators $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$, the sets of all $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ such that $M_C = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$ is generalized Weyl and generalized left (right) Weyl, are completely described. Furthermore, the following intersections and unions of the generalized left Weyl spectra
\[\bigcup_{C \in \mathcal{B}(\mathcal{K}, \mathcal{H})} \sigma_{lw}^g(M_C) \quad \text{and} \quad \bigcap_{C \in \mathcal{B}(\mathcal{K}, \mathcal{H})} \sigma_{lw}^g(M_C) \]
are also described, and necessary and sufficient conditions which two operators $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$ have to satisfy in order for M_C to be a generalized left Weyl operator for each $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$, are presented.

Key words. Operator matrix, Generalized left(right) Weyl, Spectrum.

AMS subject classifications. 47A10, 47A53, 47A55.

1. Introduction. Let \mathcal{H}, \mathcal{K} be infinite dimensional complex separable Hilbert spaces, and let $\mathcal{B}(\mathcal{H}, \mathcal{K})$ denote the set of all bounded linear operators from \mathcal{H} to \mathcal{K}. For simplicity, we also write $\mathcal{B}(\mathcal{H}, \mathcal{H})$ as $\mathcal{B}(\mathcal{H})$. By $\mathcal{J}(\mathcal{H}, \mathcal{K})$ we denote the set of all operators from $\mathcal{B}(\mathcal{H}, \mathcal{K})$ with a finite dimensional range. For a given $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$, the symbols $\mathcal{N}(A)$ and $\mathcal{R}(A)$ denote the null space and the range of A, respectively. Let $n(A) = \dim \mathcal{N}(A)$, $\beta(A) = \text{codim} \mathcal{R}(A)$, and $d(A) = \dim \mathcal{R}(A)^{\perp}$.

If $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ is such that $\mathcal{R}(A)$ is closed and $n(A) < \infty$, then A is said to be a upper semi-Fredholm operator. If $\beta(A) < \infty$, then A is called a lower semi-Fredholm operator. A semi-Fredholm operator is one which is either upper semi-Fredholm or lower semi-Fredholm. An operator $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ is called Fredholm if it is both lower semi-Fredholm and upper semi-Fredholm. The subset of $\mathcal{B}(\mathcal{H}, \mathcal{K})$ consisting of all Fredholm operators is denoted by $\Phi(\mathcal{H}, \mathcal{K})$. By $\Phi_+(\mathcal{H}, \mathcal{K})$ ($\Phi_-(\mathcal{H}, \mathcal{K})$) we denote the set of all upper (lower) semi-Fredholm operators from $\mathcal{B}(\mathcal{H}, \mathcal{K})$.

If $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ is such that $\mathcal{R}(A)$ is closed and $n(A) \leq d(A)$, then A is a generalized left Weyl operator. If $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ is such that $\mathcal{R}(A)$ is closed and $d(A) \leq n(A)$, then A is a generalized right Weyl operator. Notice that in the cases of generalized left (right) Weyl operators, $n(A)$ and $d(A)$ are allowed to be infinity. An operator $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ is a generalized Weyl operator if it is both generalized right Weyl and generalized left Weyl. The set of all generalized Weyl operators from $\mathcal{B}(\mathcal{H}, \mathcal{K})$ is denoted by $\mathcal{W}^g(\mathcal{H}, \mathcal{K})$.

Let $\mathcal{W}_{gl}(\mathcal{H}, \mathcal{K})$ ($\mathcal{W}_{gr}(\mathcal{H}, \mathcal{K})$) denote the subset of $\mathcal{B}(\mathcal{H}, \mathcal{K})$ consisting of all generalized left (right) Weyl operators. For an operator $C \in \mathcal{B}(\mathcal{H})$, the generalized left (right) Weyl spectrum $\sigma_{lw}^g(C)$ ($\sigma_{rw}^g(C)$) is defined by
\[\sigma_{lw}^g(C) = \{ \lambda \in \mathbb{C} : C - \lambda I \text{ is not generalized left (right) Weyl} \}. \]

†Received by the editors on August 10, 2016. Accepted for publication on January 11, 2017. Handling Editor: Torsten Ehrhardt.
‡School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, PR China (3695946@163.com).
§University of Niš, Department of Mathematics, Faculty of Sciences and Mathematics, 18000 Niš, Serbia (dragana@pmf.ni.ac.rs). Supported by grant no. 174007 of the Ministry of Science, Technology and Development, Republic of Serbia.
The generalized Weyl spectrum is defined by

$$\sigma^g_w(C) = \{ \lambda \in \mathbb{C} : C - \lambda I \text{ is not generalized Weyl} \}.$$

In this paper, we address the question for which operators \(A \in \mathcal{B}(\mathcal{H}) \) and \(B \in \mathcal{B}(\mathcal{K}) \), there exists an operator \(C \in \mathcal{B}(\mathcal{K}, \mathcal{H}) \) such that an upper-triangular operator matrix

$$M_C = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix} : \begin{pmatrix} \mathcal{H} \\ \mathcal{K} \end{pmatrix} \to \begin{pmatrix} \mathcal{H} \\ \mathcal{K} \end{pmatrix},$$

is generalized left (right) Weyl. There are many papers which consider some types of invertibility, regularity and some other properties of an upper-triangular operator matrix \(M_C \) (see \([11–17]\) and references therein) as well as various types of spectra of \(M_C \). This paper is a continuation of the work presented in \([10]\), where the sets \(\bigcup_{C \in \mathcal{B}(\mathcal{K}, \mathcal{H})} \sigma^g_w(M_C) \) and \(\bigcap_{C \in \mathcal{B}(\mathcal{K}, \mathcal{H})} \sigma^g_w(M_C) \) are described and some necessary and sufficient conditions for the existence of \(C \in \mathcal{B}(\mathcal{K}, \mathcal{H}) \) such that \(M_C \) is generalized Weyl are given, but the set of all such operators \(C \) is not described. As a corollary of our main results we obtain a description of all \(C \in \mathcal{B}(\mathcal{K}, \mathcal{H}) \) such that \(M_C \) is generalized Weyl, and we denote this set by \(S_{GW}(A, B) \). The sets \(\bigcup_{C \in \mathcal{B}(\mathcal{K}, \mathcal{H})} \sigma^g_w(M_C) \) and \(\bigcap_{C \in \mathcal{B}(\mathcal{K}, \mathcal{H})} \sigma^g_w(M_C) \) are described for given \(A \in \mathcal{B}(\mathcal{H}) \) and \(B \in \mathcal{B}(\mathcal{K}) \) as well as the set of all \(C \in \mathcal{B}(\mathcal{K}, \mathcal{H}) \) such that \(M_C \) is generalized left Weyl which is denoted by \(S_{GLW}(A, B) \). In an analogous way, similar results can be provided for \(\bigcup_{C \in \mathcal{B}(\mathcal{K}, \mathcal{H})} \sigma^g_w(M_C) \) and \(\bigcap_{C \in \mathcal{B}(\mathcal{K}, \mathcal{H})} \sigma^g_w(M_C) \).

2. Results. In this section, by \(\mathcal{H}, \mathcal{K} \) we denote complex separable Hilbert spaces. For given operators \(A \in \mathcal{B}(\mathcal{H}) \) and \(B \in \mathcal{B}(\mathcal{K}) \), by \(M_C \) we denote

$$M_C = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix} : \begin{pmatrix} \mathcal{H} \\ \mathcal{K} \end{pmatrix} \to \begin{pmatrix} \mathcal{H} \\ \mathcal{K} \end{pmatrix},$$

where \(C \in \mathcal{B}(\mathcal{K}, \mathcal{H}) \). Evidently, for given \(A \in \mathcal{B}(\mathcal{H}) \) and \(B \in \mathcal{B}(\mathcal{K}) \), arbitrary \(C \in \mathcal{B}(\mathcal{K}, \mathcal{H}) \) can be represented by

$$C = \begin{pmatrix} C_1 & C_2 \\ C_3 & C_4 \end{pmatrix} : \begin{pmatrix} \mathcal{N}(B) \\ \mathcal{R}(B) \end{pmatrix} \to \begin{pmatrix} \mathcal{R}(A) \\ \mathcal{R}(A)^\perp \end{pmatrix}. \quad (2.1)$$

First, we will state some auxiliary lemmas which will be used in the proof of the main result.

Lemma 2.1. If \(A \in \mathcal{B}(\mathcal{H}) \) and \(D \in \mathcal{B}(\mathcal{H}) \), then \(\mathcal{R}(A + D) \) is closed if and only if \(\mathcal{R}(A) \) is closed.

Lemma 2.2. Let \(S \in \mathcal{B}(\mathcal{H}), T \in \mathcal{B}(\mathcal{K}, \mathcal{H}) \) and \(R \in \mathcal{B}(\mathcal{H}, \mathcal{K}) \) be given operators.

(i) If \(\mathcal{R}(S) \) is non-closed and \(\mathcal{R}(\begin{pmatrix} S & T \end{pmatrix}) \) is closed, then \(n(\begin{pmatrix} S & T \end{pmatrix}) = \infty \).

(ii) If \(\mathcal{R}(S) \) is non-closed and \(\mathcal{R}(\begin{pmatrix} S \\ T \end{pmatrix}) \) is closed, then \(d(\begin{pmatrix} S \\ T \end{pmatrix}) = \infty \).

Proof. (i) Suppose that \(\mathcal{R}(S) \) is non-closed, \(\mathcal{R}(\begin{pmatrix} S & T \end{pmatrix}) \) is closed and \(n(\begin{pmatrix} S & T \end{pmatrix}) < \infty \). Then \(\begin{pmatrix} S & T \end{pmatrix} \) is a left Fredholm operator which implies that there exists an operator \(\begin{pmatrix} X \\ Y \end{pmatrix} : \mathcal{H} \to \begin{pmatrix} \mathcal{H} \\ \mathcal{K} \end{pmatrix} \) such that

$$\begin{pmatrix} X \\ Y \end{pmatrix} \begin{pmatrix} S & T \end{pmatrix} = I + K,$$

for some compact operator \(K \in \mathcal{B}(\mathcal{H} \oplus \mathcal{K}) \). Hence, \(XS = I_{\mathcal{H}} + K_1 \), for some compact operator \(K_1 \in \mathcal{B}(\mathcal{H}) \) which implies that \(S \) is left Fredholm and so \(\mathcal{R}(S) \) is closed, which is a contradiction.
(ii) The proof follows by taking adjoints in (i). □

In the following theorem, for given operators $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$, we present necessary and sufficient conditions for the existence of $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ such that M_C is a generalized left Weyl operator, and we completely describe the set of all such $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$.

Theorem 2.3. Let $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$. There exists $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ such that M_C is generalized left Weyl if and only if one of the following conditions is satisfied:

(i) $\mathcal{R}(A)$ and $\mathcal{R}(B)$ are closed and $n(A) + n(B) \leq d(A) + d(B)$. In this case,

$$S_{GLW}(A, B) = \{ C \in \mathcal{B}(\mathcal{K}, \mathcal{H}) : C \text{ is given by (2.1), } C_3 \text{ has closed range},$$

$$n(A) + n(C_3) \leq d(C_3) + d(B) \}.$$

(ii) $\mathcal{R}(A)$ is closed, $\mathcal{R}(B)$ is non-closed and $d(A) = \infty$. In this case,

$$S_{GLW}(A, B) = \{ C \in \mathcal{B}(\mathcal{K}, \mathcal{H}) : \mathcal{R}(B^*) + R(C^* P_{\mathcal{R}(A)^\perp}) \text{ is closed} \}.$$

(iii) $\mathcal{R}(A)$ is non-closed, $\mathcal{R}(B)$ is closed and $n(B) = d(A) + d(B) = \infty$. In this case,

$$S_{GLW}(A, B) = \{ C \in \mathcal{B}(\mathcal{K}, \mathcal{H}) : \mathcal{R}(A) + \mathcal{R}(C P_{\mathcal{N}(B)}) \text{ is closed},$$

$$d(B) + \text{codim}(\mathcal{R}(A) + \mathcal{R}(C P_{\mathcal{N}(B)})) = \infty \}.$$

(iv) $\mathcal{R}(A)$ and $\mathcal{R}(B)$ are non-closed and $n(B) = d(A) = \infty$. In this case,

$$S_{GLW}(A, B) = \{ C \in \mathcal{B}(\mathcal{K}, \mathcal{H}) : \mathcal{R}(M_C) \text{ is closed} \}.$$

For simplicity, we will divide the statement of this theorem into four propositions and prove each of them separately.

Proposition 2.4. Let $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$ be such that $\mathcal{R}(A)$ and $\mathcal{R}(B)$ are closed. There exists $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ such that M_C is generalized left Weyl if and only if $n(A) + n(B) \leq d(A) + d(B)$. In this case,

$$S_{GLW}(A, B) = \{ C \in \mathcal{B}(\mathcal{K}, \mathcal{H}) : C \text{ is given by (2.1), } C_3 \text{ has closed range},$$

$$n(A) + n(C_3) \leq d(C_3) + d(B) \}.$$

Proof. If $n(A) + n(B) \leq d(A) + d(B)$, then M_0 is a generalized left Weyl operator. Conversely, suppose that there exists $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ such that M_C is a generalized left Weyl operator and that C is given by (2.1). Then M_C has a matrix representation

$$M_C = \begin{pmatrix} A_1 & C_1 & C_2 \\ 0 & C_3 & C_4 \\ 0 & 0 & B_1 \end{pmatrix} : \begin{pmatrix} \mathcal{H} \\ \mathcal{N}(B) \\ \mathcal{N}(B)^\perp \end{pmatrix} \rightarrow \begin{pmatrix} \mathcal{R}(A) \\ \mathcal{R}(A)^\perp \\ \mathcal{K} \end{pmatrix},$$

where $A_1 : \mathcal{H} \rightarrow \mathcal{R}(A)$ is right invertible and $B_1 : \mathcal{N}(B)^\perp \rightarrow \mathcal{K}$ is left invertible. Evidently, there exists invertible $U, V \in \mathcal{B}(\mathcal{H} \oplus \mathcal{K})$ such that

$$UM_CV = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & C_3 & 0 \\ 0 & 0 & B_1 \end{pmatrix} : \begin{pmatrix} \mathcal{H} \\ \mathcal{N}(B) \\ \mathcal{N}(B)^\perp \end{pmatrix} \rightarrow \begin{pmatrix} \mathcal{R}(A) \\ \mathcal{R}(A)^\perp \\ \mathcal{K} \end{pmatrix}.$$
Hence, $UM_C V$ is a generalized left Weyl which implies that

$$n(A_1) + n(C_3) \leq d(C_3) + d(B_1).$$

Since,

$$n(A_1) = n(A), \quad n(B) = n(C_3) + \dim \mathcal{X}(C_3)^{\perp},$$

$$d(B_1) = d(B) \quad \text{and} \quad d(A) = d(C_3) + \dim \mathcal{R}(C_3),$$

having in mind that $\dim \mathcal{X}(C_3)^{\perp} = \dim \mathcal{R}(C_3)$ and \[2.3\], we get

$$n(A) + n(B) \leq d(A) + d(B).$$

To describe the set of all $C \in \mathcal{B} \left(\mathcal{K}, \mathcal{H} \right)$ such that M_C is a generalized left Weyl, notice that for arbitrary C given by \[2.1\], there exists invertible $U, V \in \mathcal{B} \left(\mathcal{H} \oplus \mathcal{K} \right)$ such that $UM_C V$ is given by \[2.10\]. Hence, M_C is a generalized left Weyl if and only if $UM_C V$ is a generalized left Weyl which is equivalent with the fact that $\mathcal{R}(C_3)$ is closed and that \[2.3\] holds. \square

Proposition 2.5. Let $A \in \mathcal{B} \left(\mathcal{H} \right)$ and $B \in \mathcal{B} \left(\mathcal{K} \right)$ be such that $\mathcal{R}(A)$ is closed and $\mathcal{R}(B)$ is non-closed. There exists $C \in \mathcal{B} \left(\mathcal{K}, \mathcal{H} \right)$ such that M_C is generalized left Weyl if and only if $d(A) = \infty$. In this case,

$$S_{GLW} \left(A, B \right) = \left\{ C \in \mathcal{B} \left(\mathcal{K}, \mathcal{H} \right) : \mathcal{R}(B^*) + \mathcal{R}(C^* \mathcal{P}_{\mathcal{R}(A)^{\perp}}) \text{ is closed} \right\}.$$

Proof. Suppose that $d(A) = \infty$. Then M_{C_0} is a generalized left Weyl operator for C_0 given by

$$C_0 = \begin{pmatrix} 0 \\ J \end{pmatrix} : \mathcal{K} \longrightarrow \mathcal{R}(A) \oplus \mathcal{R}(A)^{\perp},$$

where $J : \mathcal{K} \longrightarrow \mathcal{R}(A)^{\perp}$ is unitary. Evidently, M_{C_0} is represented by

$$M_{C_0} = \begin{pmatrix} A_1 & 0 \\ 0 & J \\ 0 & B \end{pmatrix} : \mathcal{H} \oplus \mathcal{K} \longrightarrow \mathcal{R}(A) \oplus \mathcal{R}(A)^{\perp} \oplus \mathcal{K},$$

where $A_1 : \mathcal{H} \longrightarrow \mathcal{R}(A)$ is right invertible. Since J is invertible, there exists an invertible operator $U \in \mathcal{B} \left(\mathcal{H} \oplus \mathcal{K} \right)$ such that

$$UM_{C_0} = \begin{pmatrix} A_1 & 0 \\ 0 & J \\ 0 & 0 \end{pmatrix} : \mathcal{H} \oplus \mathcal{K} \longrightarrow \mathcal{R}(A) \oplus \mathcal{R}(A)^{\perp} \oplus \mathcal{K}.$$

Now, it is clear that UM_{C_0} is a generalized left Weyl operator, and so M_{C_0} is a generalized left Weyl operator.

Conversely, suppose that there exists $C \in \mathcal{B} \left(\mathcal{K}, \mathcal{H} \right)$ such that M_C is generalized left Weyl. Then M_C has a matrix representation

$$M_C = \begin{pmatrix} A_1 & C_1 \\ 0 & C_2 \\ 0 & B \end{pmatrix} : \mathcal{H} \oplus \mathcal{K} \longrightarrow \mathcal{R}(A) \oplus \mathcal{R}(A)^{\perp} \oplus \mathcal{K},$$

(2.4)
where $A_1 : \mathcal{H} \rightarrow \mathcal{R}(A)$ is right invertible. Thus, there exists an invertible operator $V \in \mathcal{B}(\mathcal{H} \oplus \mathcal{K})$ such that
\[
M_C V = \begin{pmatrix} A_1 & 0 \\ 0 & C_2 \\ 0 & B \end{pmatrix} : \mathcal{H} \oplus \mathcal{K} \rightarrow \mathcal{R}(A) \oplus \mathcal{R}(A)^\perp \oplus \mathcal{K}.
\] (2.5)

Now we will show that $d(A) = \infty$: Indeed, if $d(A) < \infty$, then $\mathcal{R}(C_2^2)$ is finite dimensional. Since $\mathcal{R}(M_C V)$ is closed, we have that $\mathcal{R}\left(\begin{pmatrix} C_2 \\ B \end{pmatrix}\right)$ is closed, which implies that $\mathcal{R}(B^*) + \mathcal{R}(C_2^2)$ is closed. This, together with $\dim \mathcal{R}(C_2^2) < \infty$, implies that $\mathcal{R}(B)$ is closed. This is a contradiction. Hence, $d(A) = \infty$.

In order to describe the set $S_{GLW}(A,B)$, notice that for arbitrary $C \in \mathcal{B}(\mathcal{K},\mathcal{H})$, M_C has a form (2.4) and that there exists an invertible operator $V \in \mathcal{B}(\mathcal{H} \oplus \mathcal{K})$ such that $M_C V$ is given by (2.5). Hence, M_C is generalized left Weyl if and only if C is such that $\mathcal{R}\left(\begin{pmatrix} C_2 \\ B \end{pmatrix}\right)$ is closed and that
\[
n(A_1) + n\left(\begin{pmatrix} C_2 \\ B \end{pmatrix}\right) \leq d(A_1) + d\left(\begin{pmatrix} C_2 \\ B \end{pmatrix}\right).
\] (2.6)

Notice that by Lemma 2.2, we have that for each $C_2 \in \mathcal{B}(\mathcal{K},\mathcal{R}(A)^\perp)$ such that $\mathcal{R}\left(\begin{pmatrix} C_2 \\ B \end{pmatrix}\right)$ is closed, it follows that $d\left(\begin{pmatrix} C_2 \\ B \end{pmatrix}\right) = \infty$. Thus,
\[
S_{GLW}(A,B) = \left\{ C \in \mathcal{B}(\mathcal{K},\mathcal{H}) : \mathcal{R}(B^*) + \mathcal{R}(C^* P_{\mathcal{R}(A)^\perp}) \text{ is closed} \right\}.
\]

Proposition 2.6. Let $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$ be such that $\mathcal{R}(A)$ is non-closed and $\mathcal{R}(B)$ is closed. There exists $C \in \mathcal{B}(\mathcal{K},\mathcal{H})$ such that M_C is generalized left Weyl if and only if $n(B) = d(A) + d(B) = \infty$. In this case,
\[
S_{GLW}(A,B) = \left\{ C \in \mathcal{B}(\mathcal{K},\mathcal{H}) : \mathcal{R}(A) + \mathcal{R}(C^* P_{\mathcal{R}(A)^\perp}) \text{ is closed,} \quad d(B) + \text{codim}(\mathcal{R}(A) + \mathcal{R}(C^* P_{\mathcal{R}(A)^\perp})) = \infty \right\}.
\]

Proof. Suppose that $n(B) = d(A) + d(B) = \infty$. Then there exists a left invertible operator $C_1 : \mathcal{N}(B) \rightarrow \mathcal{H}$ such that $\mathcal{R}(C_1) = \mathcal{R}(A)$. We will prove that M_C is a generalized left Weyl operator for C given by
\[
C = \begin{pmatrix} C_1 & 0 \end{pmatrix} : \mathcal{N}(B) \oplus \mathcal{N}(B)^\perp \rightarrow \mathcal{H}.
\]
Evidently, M_C is represented by
\[
M_C = \begin{pmatrix} A & C_1 \\ 0 & 0 & B_1 \end{pmatrix} : \mathcal{H} \oplus \mathcal{N}(B) \oplus \mathcal{N}(B)^\perp \rightarrow \mathcal{H} \oplus \mathcal{K},
\]where $B_1 : \mathcal{N}(B)^\perp \rightarrow \mathcal{K}$ is left invertible and
\[
\mathcal{R}(M_C) = (\mathcal{R}(A) + \mathcal{R}(C_1)) \oplus \mathcal{R}(B_1) = \overline{\mathcal{R}(A)} \oplus \mathcal{R}(B).
\]
Thus, $\mathcal{R}(M_C)$ is closed and
\[
d(M_C) = d(A) + d(B) = \infty,
\]
i.e., M_C is a generalized left Weyl operator.

Conversely, suppose that there exists $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ such that M_C is generalized left Weyl. It follows that M_C has a matrix representation

$$M_C = \begin{pmatrix} A & C_1 & C_2 \\ 0 & 0 & B_1 \end{pmatrix} : \mathcal{H} \oplus \mathcal{N}(B) \oplus (\mathcal{B})^\perp \rightarrow \mathcal{H} \oplus \mathcal{K},$$

(2.7)

where $B_1 : \mathcal{N}(B)^\perp \rightarrow \mathcal{K}$ is left invertible and there exists an invertible operator $U \in \mathcal{B}(\mathcal{H} \oplus \mathcal{K})$ such that

$$UM_C = \begin{pmatrix} A & C_1 & 0 \\ 0 & 0 & B_1 \end{pmatrix} : \mathcal{H} \oplus \mathcal{N}(B) \oplus (\mathcal{B})^\perp \rightarrow \mathcal{H} \oplus \mathcal{K}.$$

(2.8)

Since UM_C has a closed range, by Lemma 2.1 and the fact that $\mathcal{R}(A)$ is non-closed, we have that $n(B) = \infty$. Also, applying Lemma 2.2, we get that $n((A, C_1)) = \infty$ which implies that $d(UM_C) = d(B) + d((A, C_1)) = \infty$. Since $d((A, C_1)) \leq d(A) + d(B) = \infty$, it follows that $d(A) + d(B) = \infty$.

In order to describe the set $S_{GLW}(A, B)$, notice that for arbitrary $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$, M_C has a form (2.7) and that there exists an invertible operator $V \in \mathcal{B}(\mathcal{H} \oplus \mathcal{K})$ such that UM_C is given by (2.8). Hence, M_C is generalized left Weyl if and only if C is such that $\mathcal{R}(\begin{pmatrix} A & C_1 \end{pmatrix})$ is closed and that

$$n\left(\begin{pmatrix} A & C_1 \end{pmatrix}\right) + n(B) \leq d\left(\begin{pmatrix} A & C_1 \end{pmatrix}\right) + d(B).$$

(2.9)

Notice that if $\mathcal{R}(\begin{pmatrix} A & C_1 \end{pmatrix})$ is closed, then by Lemma 2.2 we have that $n((A, C_1)) = \infty$. Hence, M_C is a generalized left Weyl operator for $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ if and only if $\mathcal{R}(\begin{pmatrix} A & C_1 \end{pmatrix})$ is closed and $d\left(\begin{pmatrix} A & C_1 \end{pmatrix}\right) + d(B) = \infty$. Obviously, $d(B) = d(B)$. \[\square\]

Proposition 2.7. Let $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$ be such that $\mathcal{R}(A)$ and $\mathcal{R}(B)$ are non-closed. There exists $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ such that M_C is generalized left Weyl if and only if $n(B) = d(A) = \infty$. In this case,

$$S_{GLW}(A, B) = \{ C \in \mathcal{B}(\mathcal{K}, \mathcal{H}) : R(M_C) \text{ is closed} \}.$$

Proof. Since $\mathcal{R}(A)$ and $\mathcal{R}(B)$ are non-closed, by Lemma 2.2 we conclude that if $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ is such that $\mathcal{R}(M_C)$ is closed, then $n(M_C) = d(M_C) = \infty$. Hence, M_C is generalized left Weyl if and only if $R(M_C)$ is closed. Now, the proof directly follows by Theorem 2.6 of [4]. \[\square\]

Remark 1. It is interesting to notice that the condition $d(B) + \text{codim}(\mathcal{R}(A) + \mathcal{R}(CP_{\mathcal{N}(B)})) = \infty$ from Proposition 2.6 appearing also in item (iii) of Theorem 2.3 can be replaced by the condition $d(C_3) + d(B) = \infty$, where C_3 is the block-operator defined by (2.1). So, if $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$ are such that $\mathcal{R}(A)$ is non-closed and $\mathcal{R}(B)$ is closed, then

$$M_C = \begin{pmatrix} A_1 & C_1 & C_2 \\ 0 & C_3 & C_4 \\ 0 & 0 & B_1 \end{pmatrix} : \begin{pmatrix} \mathcal{H} \\ \mathcal{N}(B) \\ (\mathcal{B})^\perp \end{pmatrix} \rightarrow \begin{pmatrix} \mathcal{R}(A) \\ \mathcal{R}(A)^\perp \\ \mathcal{K} \end{pmatrix},$$

where $A_1 : \mathcal{H} \rightarrow \mathcal{R}(A)$ is with a dense range and $B_1 : (\mathcal{B})^\perp \rightarrow \mathcal{K}$ is left invertible. There exists an invertible $U \in \mathcal{B}(\mathcal{H} \oplus \mathcal{K})$ such that

$$UM_C = \begin{pmatrix} A_1 & C_1 & 0 \\ 0 & C_3 & 0 \\ 0 & 0 & B_1 \end{pmatrix} : \begin{pmatrix} \mathcal{H} \\ \mathcal{N}(B) \\ (\mathcal{B})^\perp \end{pmatrix} \rightarrow \begin{pmatrix} \mathcal{R}(A) \\ \mathcal{R}(A)^\perp \\ \mathcal{K} \end{pmatrix}.$$

(2.10)
47 Generalized Left and Right Weyl Spectra of Upper Triangular Operator Matrices

Now, it is evident that \(\mathcal{R}(M_C) \) is closed if and only if \(\begin{pmatrix} A_1 & C_1 \\ 0 & C_3 \end{pmatrix} \) is closed which is equivalent with the fact that \(\mathcal{R}(A) + R(CP_{N(B)}) \) is closed. Also,

\[
\mathcal{J} \begin{pmatrix} A_1 & C_1 \\ 0 & C_3 \end{pmatrix} = n \begin{pmatrix} A_1^* & 0 \\ C_1^* & C_3^* \end{pmatrix} = n(C_3^*) = d(C_3),
\]

since \(A_1^* \) is injective (\(\mathcal{R}(A_1) = \mathcal{R}(A) \)). Hence, in this case, the set \(S_{GLW} \) can also be described by

\[
S_{GLW}(A,B) = \left\{ C \in \mathcal{B}(\mathcal{K}, \mathcal{H}) : C \text{ is given by } (2.1), \mathcal{R}(A) + R(CP_{N(B)}) \right. \\
\left. \quad \text{is closed, } d(C_3) + d(B) = \infty \right\}.
\]

As a corollary of the previous theorem, we get the description of the set \(\bigcap_{C \in \mathcal{B}(\mathcal{K}, \mathcal{H})} \sigma_{lw}^3(M_C) \):

Corollary 2.8. Let \(A \in \mathcal{B}(\mathcal{H}) \) and \(B \in \mathcal{B}(\mathcal{K}) \) be given operators. Then

\[
\bigcap_{C \in \mathcal{B}(\mathcal{K}, \mathcal{H})} \sigma_{lw}^3(M_C) = \left\{ \lambda \in \mathbb{C} : \mathcal{R}(A - \lambda I) \text{ is not closed, } n(B - \lambda I) < \infty \right\}
\]

\[
\cup \left\{ \lambda \in \mathbb{C} : \mathcal{R}(B - \lambda I) \text{ is not closed, } d(A - \lambda I) < \infty \right\}
\]

\[
\cup \left\{ \lambda \in \mathbb{C} : \mathcal{R}(A - \lambda I) \text{ is not closed, } \mathcal{R}(B - \lambda I) \text{ is closed, } d(A - \lambda I) + d(B - \lambda I) < \infty \right\}
\]

\[
\cup \left\{ \lambda \in \mathbb{C} : \mathcal{R}(A - \lambda I), \mathcal{R}(B - \lambda I) \text{ are closed, } n(A - \lambda I) + n(B - \lambda I) > d(A - \lambda I) + d(B - \lambda I) \right\}.
\]

Using Theorem 2.3, Remark 1 and the fact that \(A \) is generalized left Weyl if and only if \(A^* \) is generalized right Weyl, we can give the description of the set \(S_{GW}(A,B) \) which consists of all \(C \in \mathcal{B}(\mathcal{K}, \mathcal{H}) \) such that \(M_C \) is generalized Weyl. Notice that necessary and sufficient conditions for the existence of \(C \in \mathcal{B}(\mathcal{K}, \mathcal{H}) \) such that \(M_C \) is generalized Weyl are given in [10].

Theorem 2.9. Let \(A \in \mathcal{B}(\mathcal{H}) \) and \(B \in \mathcal{B}(\mathcal{K}) \) be given operators. There exists \(C \in \mathcal{B}(\mathcal{K}, \mathcal{H}) \) such that \(M_C \) is generalized Weyl if and only if one of the following conditions is satisfied:

(i) \(\mathcal{R}(A) \) and \(\mathcal{R}(B) \) are closed and \(n(A) + n(B) = d(A) + d(B) \). In this case,

\[
S_{GW}(A,B) = \left\{ C \in \mathcal{B}(\mathcal{K}, \mathcal{H}) : C \text{ is given by } (2.1), C_3 \text{ has closed range, } n(A) + n(C_3) = d(C_3) + d(B) \right\}.
\]

(ii) \(\mathcal{R}(A) \) is closed, \(\mathcal{R}(B) \) is non-closed and \(d(A) = n(A) + n(B) = \infty \). In this case,

\[
S_{GW}(A,B) = \left\{ C \in \mathcal{B}(\mathcal{K}, \mathcal{H}) : C \text{ is given by } (2.1), n(A) + n(C_3) = \infty, \mathcal{R}(B^*) + R(C^*P_{\mathcal{R}(A)\perp}) \text{ is closed} \right\}.
\]

(iii) \(\mathcal{R}(A) \) is non-closed, \(\mathcal{R}(B) \) is closed and \(n(B) = d(A) + d(B) = \infty \). In this case,

\[
S_{GW}(A,B) = \left\{ C \in \mathcal{B}(\mathcal{K}, \mathcal{H}) : C \text{ is given by } (2.1), d(B) + d(C_3) = \infty, \mathcal{R}(A) + \mathcal{R}(C_PN(B)) \text{ is closed} \right\}.
\]
(iv) $\mathcal{R}(A)$ and $\mathcal{R}(B)$ are non-closed and $n(B) = d(A) = \infty$. In this case,

$$S_{GW}(A, B) = \{C \in \mathcal{B}(\mathcal{K}, \mathcal{H}) : \mathcal{R}(M_C) \text{ is closed}\}.$$

Proof. Since necessary and sufficient conditions for the existence of $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ such that M_C is generalized Weyl are given in [10], we need only prove that the set $S_{GW}(A, B)$ is given as claimed in each of the four possible cases appearing above.

(i) Suppose that $\mathcal{R}(A)$ and $\mathcal{R}(B)$ are closed and $n(A) + n(B) = d(A) + d(B)$. Using Theorem 2.3, we have that $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ is such that M_C is generalized left Weyl if and only if C_3 has closed range and

$$n(A) + n(C_3) \leq d(C_3) + d(B).$$

Since we are looking for $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ such that M_C is generalized Weyl, we are asking for which $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ satisfying the previously mentioned condition, M_C is generalized right Weyl i.e. $(M_C)\!*$ is generalized left Weyl. Since,

$$(M_C)\!* = \left(\begin{array}{cc} B^* & C^* \\ 0 & A^* \end{array} \right) : \left(\begin{array}{c} \mathcal{K} \\ \mathcal{H} \end{array} \right) \to \left(\begin{array}{c} \mathcal{K} \\ \mathcal{H} \end{array} \right),$$

and for C given by (2.1), C^* is given by

$$C^* = \left(\begin{array}{cc} C_4^* & C_2^* \\ C_3^* & C_1^* \end{array} \right) : \left(\begin{array}{c} \mathcal{N}(A^*) \\ \mathcal{R}(B^*) \end{array} \right) \to \left(\begin{array}{c} \mathcal{R}(A^*) \end{array} \right),$$

applying Theorem 2.3, we get that $(M_C)\!*$ is a generalized left Weyl operator if and only if $\mathcal{R}(C_4^*)$ is closed and

$$n(B^*) + n(C_3^*) \leq d(C_3^*) + d(A^*)$$

which is equivalent with $\mathcal{R}(C_3)$ being closed and the inequality $d(C_3) + d(B) \leq n(A) + n(C_3)$. Hence, M_C is a generalized Weyl operator if and only if C is given by (2.1), where C_3 has closed range and $n(A) + n(C_3) = d(C_3) + d(B)$.

(ii) Suppose that $\mathcal{R}(A)$ is closed, $\mathcal{R}(B)$ is non-closed and $d(A) = n(A) + n(B) = \infty$. Using Theorem 2.3, we have that $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ is such that M_C is generalized left Weyl if and only if $\mathcal{R}(B^*) + \mathcal{R}(C^*P_{\mathcal{N}(A)^+})$ is closed. By item (iii) of Theorem 2.3, using the representations of $(M_C)\!*$ given above, we get that $(M_C)\!*$ is a generalized left Weyl operator if and only if $\mathcal{R}(B^*) + \mathcal{R}(C^*P_{\mathcal{N}(A)^+})$ is closed and $d(A^*) + \text{codim}(\mathcal{R}(B^*) + \mathcal{R}(C^*P_{\mathcal{N}(A)^+})) = \infty$. By Remark 1, we have that the last condition is equivalent with $d(C_3^*) + d(A^*) = \infty$, i.e., $n(A) + n(C_3) = \infty$, where C_3 is the block operator in the representation (2.1) of C.

Hence, M_C is a generalized Weyl operator if and only if C is given by (2.1), where $\mathcal{R}(B^*) + \mathcal{R}(C^*P_{\mathcal{N}(A)^+})$ is closed and $n(A) + n(C_3) = \infty$.

Items (iii) and (iv) can be proved in a similar manner. □

In the next theorem, we present necessary and sufficient conditions which two operators $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$ have to satisfy in order for M_C to be a generalized left Weyl operator for each $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$.

Theorem 2.10. Let $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$. Then M_C is a generalized left Weyl operator for each $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ if and only if $\mathcal{R}(A)$ and $\mathcal{R}(B)$ are closed and one of the following conditions is satisfied:

1. $d(A) < \infty$, $n(B) = \infty$, $d(B) = \infty$,

Guojun Hai and Dragana S. Cvetković-Ilić 48
(2) \(d(A) = \infty, \) \(n(B) < \infty, \)

(3) \(d(A), n(B) < \infty, n(A) + n(B) \leq d(A) + d(B). \)

Proof. Suppose that \(M_C \) is a generalized left Weyl operator for each \(C \in \mathcal{B}(\mathcal{K}, \mathcal{H}). \) If at least one of \(\mathcal{R}(A) \) and \(\mathcal{R}(B) \) is not closed, we have that \(M_0 \) is not a generalized left Weyl operator since its range is not closed. So, it follows that \(\mathcal{R}(A) \) and \(\mathcal{R}(B) \) are closed subspaces.

Notice that for arbitrary \(C \in \mathcal{B}(\mathcal{K}, \mathcal{H}), \) \(M_C \) is given by

\[
M_C = \begin{pmatrix}
0 & A_1 & C_1 & C_2 \\
0 & 0 & C_3 & C_4 \\
0 & 0 & 0 & B_1 \\
0 & 0 & 0 & 0
\end{pmatrix} : \begin{pmatrix}
\mathcal{N}(A) \\
\mathcal{N}(A)^\perp \\
\mathcal{N}(B) \\
\mathcal{N}(B)^\perp
\end{pmatrix} \rightarrow \begin{pmatrix}
\mathcal{R}(A) \\
\mathcal{R}(A)^\perp \\
\mathcal{R}(B) \\
\mathcal{R}(B)^\perp
\end{pmatrix}, \tag{2.12}
\]

where \(A_1, B_1 \) are invertible operators and that there exist invertible \(U, V \in \mathcal{B}(\mathcal{H} \oplus \mathcal{K}) \) such that

\[
UM_CV = \begin{pmatrix}
0 & A_1 & 0 & 0 \\
0 & 0 & C_3 & 0 \\
0 & 0 & 0 & B_1 \\
0 & 0 & 0 & 0
\end{pmatrix} : \begin{pmatrix}
\mathcal{N}(A) \\
\mathcal{N}(A)^\perp \\
\mathcal{N}(B) \\
\mathcal{N}(B)^\perp
\end{pmatrix} \rightarrow \begin{pmatrix}
\mathcal{R}(A) \\
\mathcal{R}(A)^\perp \\
\mathcal{R}(B) \\
\mathcal{R}(B)^\perp
\end{pmatrix}. \tag{2.13}
\]

So, for any \(C_3 \in \mathcal{B}(\mathcal{N}(B), \mathcal{R}(A)^\perp) \), we have that \(\mathcal{R}(C_3) \) is closed and

\[
n(A) + n(C_3) \leq d(B) + d(C_3). \]

Hence, at least one of \(d(A) \) and \(n(B) \) is finite. So, we will consider all possible cases (there are 3 in total) when at least one of \(d(A) \) and \(n(B) \) is finite.

Suppose first that \(d(A) < \infty \) and \(n(B) = \infty. \) Since for any \(C_3 \in \mathcal{B}(\mathcal{N}(B), \mathcal{R}(A)^\perp) \), it follows that \(n(C_3) = \infty, \) and since there exists \(C_3 \in \mathcal{B}(\mathcal{N}(B), \mathcal{R}(A)^\perp) \) such that \(d(C_3) = 0, \) we conclude that \(n(M_C) \leq d(M_C), \) for each \(C \in \mathcal{B}(\mathcal{K}, \mathcal{H}) \) if and only if \(d(B) = \infty. \)

If \(d(A) = \infty \) and \(n(B) < \infty \) then for any \(C_3 \in \mathcal{B}(\mathcal{N}(B), \mathcal{R}(A)^\perp) \), we have that \(d(C_3) = \infty, \) so \(n(M_C) \leq d(M_C) \) is satisfied for any \(C \in \mathcal{B}(\mathcal{K}, \mathcal{H}). \)

If \(d(A), n(B) < \infty \) then for any \(C_3 \in \mathcal{B}(\mathcal{N}(B), \mathcal{R}(A)^\perp) \), we have that \(n(B) - n(C_3) = d(A) - d(C_3), \) so \(n(M_C) \leq d(M_C) \) if and only if \(n(A) + n(B) \leq d(A) + d(B). \)

The converse implication can be proved in the same manner. \(\square \)

As a corollary of the previous theorem, we also get the description of the set \(\bigcup_{C \in \mathcal{B}(\mathcal{K}, \mathcal{H})} \sigma_{lw}^c(M_C): \)

Corollary 2.11. For given operators \(A \in \mathcal{B}(\mathcal{H}) \) and \(B \in \mathcal{B}(\mathcal{K}) \) we have

\[
\bigcup_{C \in \mathcal{B}(\mathcal{K}, \mathcal{H})} \sigma_{lw}^c(M_C) = \{ \lambda \in \mathbb{C} : \mathcal{R}(A - \lambda I) \text{ not closed} \}
\]

\[
\bigcup \{ \lambda \in \mathbb{C} : \mathcal{R}(B - \lambda I) \text{ not closed} \}
\]

\[
\bigcup \{ \lambda \in \mathbb{C} : d(A - \lambda I) = n(B - \lambda I) = \infty \}
\]

\[
\bigcup \{ \lambda \in \mathbb{C} : d(A - \lambda I), n(B - \lambda I) < \infty,
\]

\[
\text{\(n(A - \lambda I) + n(B - \lambda I) > d(A - \lambda I) + d(B - \lambda I) \))
\]

\[
\bigcup \{ \lambda \in \mathbb{C} : d(B - \lambda I) < n(B - \lambda I) = \infty \}. \]
REMARK 2. Throughout the paper, we have used the following fact: For given operators \(A \in \mathcal{B}(\mathcal{H}) \) and \(B \in \mathcal{B}(\mathcal{K}) \) in each of following three cases:

(i) \(\mathcal{R}(A) \) and \(\mathcal{R}(B) \) are closed,

(ii) \(\mathcal{R}(A) \) is closed, \(\mathcal{R}(B) \) is non-closed,

(iii) \(\mathcal{R}(A) \) is non-closed, \(\mathcal{R}(B) \) is closed,

we have that \(\mathcal{R}(M_C) \) is closed if and only if the respective condition below is satisfied:

1. \(\mathcal{R}(C_3) \) is closed,

2. \(\mathcal{R}(B^*) + \mathcal{R}(C^*P_{\mathcal{R}(A)\perp}) \) is closed,

3. \(\mathcal{R}(A) + R(CP_{\mathcal{N}(B)}) \) is closed.

REFERENCES

