Oriented graph, Graph energy, Skew energy, Skew-adjacency matrix, Skew characteristic polynomial


Let S(G^σ) be the skew-adjacency matrix of an oriented graph Gσ. The skew energy of G^σ is the sum of all singular values of its skew-adjacency matrix S(G^σ). This paper first establishes an integral formula for the skew energy of an oriented graph. Then, it determines all oriented graphs with minimal skew energy among all connected oriented graphs on n vertices with m (n ≤ m < 2(n − 2)) arcs, which is analogous to the conjecture for the energy of undirected graphs proposed by Caporossi et al. [G. Caporossi, D. Cvetkovic, I. Gutman, and P. Hansen. Variable neighborhood search for extremal graphs. 2. Finding graphs with external energy. J. Chem. Inf. Comput. Sci., 39:984–996, 1999].



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.