Normalized Laplaican spectral radius, Randi\'c energy, Normalized Laplacian spread, Nordhaus-Gaddum type results, Vertex cover number


Let $G=(V,\,E)$ be a simple graph of order $n$ and the normalized Laplacian eigenvalues $\rho_1\geq \rho_2\geq \cdots\geq\rho_{n-1}\geq \rho_n=0$. The normalized Laplacian energy (or Randi\'c energy) of $G$ without any isolated vertex is defined as $$RE(G)=\sum_{i=1}^{n}|\rho_i-1|.$$ In this paper, a lower bound on $\rho_1$ of connected graph $G$ ($G$ is not isomorphic to complete graph) is given and the extremal graphs (that is, the second minimal normalized Laplacian spectral radius of connected graphs) are characterized. Moreover, Nordhaus-Gaddum type results for $\rho_1$ are obtained. Recently, Gutman et al.~gave a conjecture on Randi\'c energy of connected graph [I. Gutman, B. Furtula, \c{S}. B. Bozkurt, On Randi\'c energy, Linear Algebra Appl. 442 (2014) 50--57]. Here this conjecture for starlike trees is proven.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.