Matrix Polynomial, Polynomial Eigenvalue Problem, Arnoldi, Krylov subspace, Self-adjoint, Invariant subspace


It is well known that every real or complex square matrix is unitarily similar to an upper Hessenberg matrix. The purpose of this paper is to provide a constructive proof of the result that every square matrix polynomial can be reduced to an upper Hessenberg matrix, whose entries are rational functions and in special cases polynomials. It will be shown that the determinant is preserved under this transformation, and both the finite and infinite eigenvalues of the original matrix polynomial can be obtained from the upper Hessenberg matrix.

abs_vol31_pp321-334.pdf (21 kB)

Included in

Algebra Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.