perturbation upper bounds, subunitary polar factor, unitarily invariant norm, $Q$-norm


Let $A\in\mathbb{C}^{m \times n}$ have generalized polar decomposition $A = QH$ with $Q$ subunitary and $H$ positive semidefinite. Absolute and relative perturbation bounds are derived for the subunitary polar factor $Q$ in unitarily invariant norms and in $Q$-norms, that extend and improve existing bounds.

Included in

Analysis Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.