Hilbert $C^*$-module, Operator equation, Solution, Orthogonally complemented


Necessary and sufficient conditions are given for the operator system $A_1X=C_1$, $XA_2=C_2$, $A_3XA^*_3=C_3$, and $A_4XA^*_4=C_4$ to have a common positive solution, where $A_i$'s and $C_i$'s are adjointable operators on Hilbert $C^*$-modules. This corrects a published result by removing some gaps in its proof. Finally, a technical example is given to show that the proposed investigation in the setting of Hilbert $C^*$-modules is different from that of Hilbert spaces.

Included in

Analysis Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.