•  
  •  
 

Keywords

Semipositive matrix, minimally semipositive matrix, principal pivot transform, Moore-Penrose inverse, left inverse, interval of matrices

Abstract

Semipositive matrices (matrices that map at least one nonnegative vector to a positive vector) and minimally semipositive matrices (semipositive matrices whose no column-deleted submatrix is semipositive) are well studied in matrix theory. In this article, this notion is revisited and new results are presented. It is shown that the set of all $m \times n$ minimally semipositive matrices contains a basis for the linear space of all $m \times n$ matrices. Apart from considerations involving principal pivot transforms and the Schur complement, results on semipositivity and/or minimal semipositivity for the following classes of matrices are presented: intervals of rectangular matrices, skew-symmetric and almost skew-symmetric matrices, copositive matrices, $N$-matrices, almost $N$-matrices and almost $P$-matrices.

abs_vol34_pp35-53.pdf (106 kB)
Abstract

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.