•  
  •  
 

Keywords

Delay differential-algebraic equations, Differential-Algebraic Equations, Classification of DDAEs, Primary Discontinuities, Splicing Conditions, Exponential Stability

Abstract

The propagation of primary discontinuities in initial value problems for linear delay differential-algebraic equations (DDAEs) is discussed. Based on the (quasi-) Weierstra{\ss} form for regular matrix pencils, a complete characterization of the different propagation types is given and algebraic criteria in terms of the matrices are developed. The analysis, which is based on the method of steps, takes into account all possible inhomogeneities and history functions and thus serves as a worst-case scenario. Moreover, it reveals possible hidden delays in the DDAE and allows to study exponential stability of the DDAE based on the spectral abscissa. The new classification for DDAEs is compared to existing approaches in the literature and the impact of splicing conditions on the classification is studied.

abs_vol34_pp582-601.pdf (97 kB)
Abstract

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.