•  
  •  
 

Keywords

The equality constrained indefinite least squares problem, condition number, Frech\'{e}t derivative, Kronecker product, compact form

Abstract

In this paper, within a unified framework of the condition number theory, the explicit expression of the \emph{projected} condition number of the equality constrained indefinite least squares problem is presented. By setting specific norms and parameters, some widely used condition numbers, like the normwise, mixed and componentwise condition numbers follow as its special cases. Considering practical applications and computation, some new compact forms or upper bounds of the projected condition numbers are given to improve the computational efficiency. The new compact forms are of particular interest in calculating the exact value of the 2-norm projected condition numbers. When the equality constrained indefinite least squares problem degenerates into some specific least squares problems, our results give some new findings on the condition number theory of these specific least squares problems. Numerical experiments are given to illustrate our theoretical results.

abs_vol34_pp619-638.pdf (102 kB)
Abstract

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.