Linear preservers, Semipositive matrix, Minimally semipositive matrix, Monomial matrix


Semipositive matrices (matrices that map at least one nonnegative vector to a positive vector) and minimally semipositive matrices (semipositive matrices whose no column-deleted submatrix is semipositive) are well studied in matrix theory. In this short note, the structure of linear maps which preserve the set of all semipositive/minimally semipositive matrices is studied. An open problem is solved, and some ambiguities in the article [J. Dorsey, T. Gannon, N. Jacobson, C.R. Johnson and M. Turnansky. Linear preservers of semi-positive matrices. {\em Linear and Multilinear Algebra}, 64:1853--1862, 2016.] are clarified.

abs_vol34_pp687-694.pdf (101 kB)

Included in

Algebra Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.