•  
  •  
 

Keywords

Nonlinear eigenvalue problem, rational matrix pencil, complementarity problem, polyhedral cone, Facial reduction technique method

Abstract

This work deals with the eigenvalue analysis of a rational matrix-valued function subject to complementarity constraints induced by a polyhedral cone $K$. The eigenvalue problem under consideration has the general structure \[ \left(\sum_{k=0}^d \lambda^k A_k + \sum_{k =1}^m \frac{p_k(\lambda)}{q_k(\lambda)} \,B_k\right) x = y , \quad K\ni x \perp y\in K^\ast, \] where $K^\ast$ denotes the dual cone of $K$. The unconstrained version of this problem has been discussed in [Y.F. Su and Z.J. Bai. Solving rational eigenvalue problems via linearization. \emph{SIAM J. Matrix Anal. Appl.}, 32:201--216, 2011.] with special emphasis on the implementation of linearization-based methods. The cone-constrained case can be handled by combining Su and Bai's linearization approach and the so-called facial reduction technique. In essence, this technique consists in solving one unconstrained rational eigenvalue problem for each face of the polyhedral cone $K$.

abs_vol35_pp187-203.pdf (136 kB)
Abstract

Included in

Algebra Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.