Nonlinear eigenvalue problem, rational matrix pencil, complementarity problem, polyhedral cone, Facial reduction technique method


This work deals with the eigenvalue analysis of a rational matrix-valued function subject to complementarity constraints induced by a polyhedral cone $K$. The eigenvalue problem under consideration has the general structure \[ \left(\sum_{k=0}^d \lambda^k A_k + \sum_{k =1}^m \frac{p_k(\lambda)}{q_k(\lambda)} \,B_k\right) x = y , \quad K\ni x \perp y\in K^\ast, \] where $K^\ast$ denotes the dual cone of $K$. The unconstrained version of this problem has been discussed in [Y.F. Su and Z.J. Bai. Solving rational eigenvalue problems via linearization. \emph{SIAM J. Matrix Anal. Appl.}, 32:201--216, 2011.] with special emphasis on the implementation of linearization-based methods. The cone-constrained case can be handled by combining Su and Bai's linearization approach and the so-called facial reduction technique. In essence, this technique consists in solving one unconstrained rational eigenvalue problem for each face of the polyhedral cone $K$.

abs_vol35_pp187-203.pdf (136 kB)

Included in

Algebra Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.