•  
  •  
 

Keywords

Block generalized locally Toeplitz sequences, Matrix functions, Differential eigenvalue problems, Higher-order isogeometric Galerkin method, B-splines

Abstract

The theory of block generalized locally Toeplitz (GLT) sequences is a powerful apparatus for computing the spectral distribution of block-structured matrices arising from the discretization of differential problems, with a special reference to systems of differential equations (DEs) and to the higher-order finite element or discontinuous Galerkin approximation of both scalar and vectorial DEs. In the present paper, the theory of block GLT sequences is extended by proving that $\{f(A_n)\}_n$ is a block GLT sequence as long as $f$ is continuous and $\{A_n\}_n$ is a block GLT sequence formed by Hermitian matrices. It is also provided a relevant application of this result to the computation of the distribution of the numerical eigenvalues obtained from the higher-order isogeometric Galerkin discretization of second-order variable-coefficient differential eigenvalue problems (a topic of interest not only in numerical analysis but also in engineering).

abs_vol35_pp204-222.pdf (117 kB)
Abstract

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.