•  
  •  
 

Keywords

interval matrices, rank, rational realization

Abstract

An interval matrix is a matrix whose entries are intervals in $\R$. This concept, which has been broadly studied, is generalized to other fields. Precisely, a rational interval matrix is defined to be a matrix whose entries are intervals in $\Q$. It is proved that a (real) interval $p \times q$ matrix with the endpoints of all its entries in $\Q$ contains a rank-one matrix if and only if it contains a rational rank-one matrix, and contains a matrix with rank smaller than $\min\{p,q\}$ if and only if it contains a rational matrix with rank smaller than $\min\{p,q\}$; from these results and from the analogous criterions for (real) inerval matrices, a criterion to see when a rational interval matrix contains a rank-one matrix and a criterion to see when it is full-rank, that is, all the matrices it contains are full-rank, are deduced immediately. Moreover, given a field $K$ and a matrix $\al$ whose entries are subsets of $K$, a criterion to find the maximal rank of a matrix contained in $\al$ is described.

abs_vol35_pp285-296.pdf (104 kB)
Abstract

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.