•  
  •  
 

Keywords

Orthogonal matrix, orthogonal pattern, zero diagonal, distinct eigenvalues

Abstract

This paper considers real orthogonal $n\times n$ matrices whose diagonal entries are zero and off-diagonal entries nonzero, which are referred to as $\OMZD(n)$. It is shown that there exists an $\OMZD(n)$ if and only if $n\neq 1,\ 3$, and that a symmetric $\OMZD(n)$ exists if and only if $n$ is even and $n\neq 4$. Also, a construction of $\OMZD(n)$ obtained from doubly regular tournaments is given. Finally, the results are applied to determine the minimum number of distinct eigenvalues of matrices associated with some families of graphs, and the related notion of orthogonal matrices with partially-zero diagonal is considered.

abs_vol35_pp307-318.pdf (106 kB)
Abstract

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.