•  
  •  
 

Keywords

Nonnegative inverse eigenvalue problem, nonnegative matrix, Leslie matrix, polyhedral proper cone

Abstract

The Nonnegative Inverse Eigenvalue Problem (NIEP) is the problem of determining necessary and sufficient conditions for a list of $n$ complex numbers to be the spectrum of an entry--wise nonnegative matrix of dimension $n$. This is a very difficult and long standing problem and has been solved only for $n\leq 4$. In this paper, the NIEP for a particular class of nonnegative matrices, namely Leslie matrices, is considered. Leslie matrices are nonnegative matrices, with a special zero--pattern, arising in the Leslie model, one of the best known and widely used models to describe the growth of populations. The lists of nonzero complex numbers that are subsets of the spectra of Leslie matrices are fully characterized. Moreover, the minimal dimension of a Leslie matrix having a given list of three numbers among its spectrum is provided. This result is partially extended to the case of lists of $n > 2$ real numbers.

abs_vol35_pp319-330.pdf (98 kB)
Abstract

Included in

Algebra Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.