•  
  •  
 

Keywords

invertible positive operators, generalized weighted quasi-arithmetic means, Kubo-Ando means, nonlinear preservers

Abstract

In this paper, the problem of describing the structure of transformations leaving norms of generalized weighted quasi-arithmetic means of invertible positive operators invariant is discussed. In a former result of the authors, this problem was solved for weighted quasi-arithmetic means, and here the corresponding result is generalized by establishing its solution under certain mild conditions. It is proved that in a quite general setting, generalized weighted quasi-arithmetic means on self-adjoint operators are not monotone in their variables which is an interesting property. Moreover, the relation of these means with the Kubo-Ando means is investigated and it is shown that the common members of the classes of these types of means are weighted arithmetic means.

Included in

Analysis Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.