•  
  •  
 

Article Title

SPN Graphs

Keywords

Copositive, SPN, F_5, fan, completion, matrix, graph

Abstract

A simple graph G is an SPN graph if every copositive matrix having graph G is the sum of a positive semidefinite and nonnegative matrix. SPN graphs were introduced in [N. Shaked-Monderer. SPN graphs: When copositive = SPN. Linear Algebra Appl., 509:82{113, 2016.], where it was conjectured that the complete subdivision graph of K4 is an SPN graph. This conjecture is disproved, which in conjunction with results in the Shaked-Monderer paper show that a subdivision of K_4 is a SPN graph if and only if at most one edge is subdivided. It is conjectured that a graph is an SPN graph if and only if it does not have an F_5 minor, where F_5 is the fan on five vertices. To establish that the complete subdivision graph of K_4 is not an SPN graph, rank-1 completions are introduced and graphs that are rank-1 completable are characterized.

abs_vol35_pp376-386.pdf (116 kB)
PDF of Abstract

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.