•  
  •  
 

Keywords

Quaternion matrix equations, Real representations, $\eta$-conjugates, $\eta$-conjugate transposes, Ordered units triple.

Abstract

For a given ordered units triple $\{q_1, q_2, q_3\}$, the solutions to the quaternion matrix equations $AX^{\star}-XB=C$ and $X-AX^{\star}B=C$, $X^{\star} \in \{ X , X^{\eta} , X^* , X^{\eta*}\}$, where $X^*$ is the conjugate transpose of $X$, $X^{\eta}=-\eta X \eta$ and $X^{\eta*}=-\eta X^* \eta$, $\eta \in \{q_1, q_2, q_3\}$, are discussed. Some new real representations of quaternion matrices are used, which enable one to convert $\eta$-conjugate (transpose) matrix equations into some real matrix equations. By using this idea, conditions for the existence and uniqueness of solutions to the above quaternion matrix equations are derived. Also, methods to construct the solutions from some related real matrix equations are presented.

abs_vol35_pp394-407.pdf (155 kB)
Abstract

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.