•  
  •  
 

Keywords

Rectangular matrix polynomials, generalized linearization, strong generalized linearization, linearization, strong linearization, complete polynomial eigenvalue problem, recovery of minimal indices and bases, backward error analysis.

Abstract

The complete eigenvalue problem associated with a rectangular matrix polynomial is typically solved via the technique of linearization. This work introduces the concept of generalized linearizations of rectangular matrix polynomials. For a given rectangular matrix polynomial, it also proposes vector spaces of rectangular matrix pencils with the property that almost every pencil is a generalized linearization of the matrix polynomial which can then be used to solve the complete eigenvalue problem associated with the polynomial. The properties of these vector spaces are similar to those introduced in the literature for square matrix polynomials and in fact coincide with them when the matrix polynomial is square. Further, almost every pencil in these spaces can be `trimmed' to form many smaller pencils that are strong linearizations of the matrix polynomial which readily yield solutions of the complete eigenvalue problem for the polynomial. These linearizations are easier to construct and are often smaller than the Fiedler linearizations introduced in the literature for rectangular matrix polynomials. Additionally, a global backward error analysis applied to these linearizations shows that they provide a wide choice of linearizations with respect to which the complete polynomial eigenvalue problem can be solved in a globally backward stable manner.

abs_vol35_pp116-155.pdf (92 kB)
Abstract

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.